Radian Explained

Radian
Standard:SI
Quantity:angle
Symbol:rad
Units1:milliradians
Inunits1:1000 mrad
Units2:turns
Inunits2: turn
Units3:degrees
Inunits3:° ≈ 57.296°
Units4:gradians
Inunits4: grad ≈ 63.662g

The radian, denoted by the symbol rad, is the unit of angle in the International System of Units (SI) and is the standard unit of angular measure used in many areas of mathematics. It is defined such that one radian is the angle subtended at the centre of a circle by an arc that is equal in length to the radius. The unit was formerly an SI supplementary unit and is currently a dimensionless SI derived unit,[1] defined in the SI as 1 rad = 1[2] and expressed in terms of the SI base unit metre (m) as . Angles without explicitly specified units are generally assumed to be measured in radians, especially in mathematical writing.[3]

Definition

One radian is defined as the angle subtended from the center of a circle which intercepts an arc equal in length to the radius of the circle. More generally, the magnitude in radians of a subtended angle is equal to the ratio of the arc length to the radius of the circle; that is,

\theta=

s
r
, where is the magnitude of the subtended angle in radians (= angle/rad), is arc length, and is radius. A right angle is exactly
\pi
2
radians.

In the SI (and most areas of mathematics and science), what is called "angle" is actually the numerical value of the angle when the angle is expressed in radians: angle/rad. The SI "radian" is thus the numerical value of one radian when expressed in radians, hence the SI "rad" = (1 rad)/rad = 1. This has caused some confusion. The numerical value of the rotation angle when expressed in radians (i.e. 360°/rad) corresponding to one complete revolution is the length of the circumference divided by the radius, which is

2\pir
r
, or . Thus,  radians is equal to 360 degrees.

The relation can be derived using the formula for arc length, \ell_=2\pi r\left(\tfrac\right). Since radian is the measure of an angle that is subtended by an arc of a length equal to the radius of the circle, 1=2\pi\left(\tfrac\right). This can be further simplified to 1=\tfrac. Multiplying both sides by gives .

Unit symbol

The International Bureau of Weights and Measures and International Organization for Standardization[4] specify rad as the symbol for the radian. Alternative symbols that were in use in 1909 are c (the superscript letter c, for "circular measure"), the letter r, or a superscript, but these variants are infrequently used, as they may be mistaken for a degree symbol (°) or a radius (r). Hence an angle of 1.2 radians would be written today as 1.2 rad; archaic notations could include 1.2 r, 1.2, 1.2, or 1.2.

In mathematical writing, the symbol "rad" is often omitted. When quantifying an angle in the absence of any symbol, radians are assumed, and when degrees are meant, the degree sign is used.

Dimensional analysis

Plane angle may be defined as, where is the (numerical value of the) subtended angle in radians, is arc length, and is radius. One SI radian corresponds to the (numerical value of the) angle expressed in radians for which, hence = 1.[5] However, is only to be used to express angles, not to express ratios of lengths in general. A similar calculation using the area of a circular sector gives 1 SI radian as 1 m2/m2 = 1.[6] The key fact is that the SI radian is a dimensionless unit equal to 1. In SI 2019, the SI radian is defined accordingly as .[7] It is a long-established practice in mathematics and across all areas of science to make use of .[8]

Giacomo Prando writes "the current state of affairs leads inevitably to ghostly appearances and disappearances of the radian in the dimensional analysis of physical equations".[9] For example, an object hanging by a string from a pulley will rise or drop by centimeters, where is the numerical value of the radius of the pulley when expressed in centimeters and is the numerical value of the angle through which the pulley turns when expressed in radians. When multiplying by the unit radian does not appear in the result. Similarly in the formula for the angular velocity of a rolling wheel,, radians appear in the units of but not on the right hand side.[10] Anthony French calls this phenomenon "a perennial problem in the teaching of mechanics".[11] Oberhofer says that the typical advice of ignoring radians during dimensional analysis and adding or removing radians in units according to convention and contextual knowledge is "pedagogically unsatisfying".[12]

In 1993 the American Association of Physics Teachers Metric Committee specified that the radian should explicitly appear in quantities only when different numerical values would be obtained when other angle measures were used, such as in the quantities of angle measure (rad), angular speed (rad/s), angular acceleration (rad/s2), and torsional stiffness (N⋅m/rad), and not in the quantities of torque (N⋅m) and angular momentum (kg⋅m2/s).[13]

At least a dozen scientists between 1936 and 2022 have made proposals to treat the radian as a base unit of measurement for a base quantity (and dimension) of "plane angle".[14] [15] Quincey's review of proposals outlines two classes of proposal. The first option changes the unit of a radius to meters per radian, but this is incompatible with dimensional analysis for the area of a circle, . The other option is to introduce a dimensional constant. According to Quincey this approach is "logically rigorous" compared to SI, but requires "the modification of many familiar mathematical and physical equations". A dimensional constant for angle is "rather strange" and the difficulty of modifying equations to add the dimensional constant is likely to preclude widespread use.

In particular, Quincey identifies Torrens' proposal to introduce a constant equal to 1 inverse radian (1 rad−1) in a fashion similar to the introduction of the constant ε0. With this change the formula for the angle subtended at the center of a circle,, is modified to become, and the Taylor series for the sine of an angle becomes:\operatorname \theta = \sin \ x = x - \frac + \frac - \frac + \cdots = \eta \theta - \frac + \frac - \frac + \cdots,where

x=η\theta=\theta/rad

is the numerical value of the angle when expressed in radians.The capitalized function is the "complete" function that takes an argument with a dimension of angle and is independent of the units expressed, while is the traditional function on pure numbers which assumes its argument is a dimensionless number in radians. The capitalised symbol

\operatorname{Sin}

can be denoted

\sin

if it is clear that the complete form is meant.

Current SI can be considered relative to this framework as a natural unit system where the equation is assumed to hold, or similarly, . This radian convention allows the omission of in mathematical formulas.

Defining radian as a base unit may be useful for software, where the disadvantage of longer equations is minimal.[16] For example, the Boost units library defines angle units with a plane_angle dimension,[17] and Mathematica's unit system similarly considers angles to have an angle dimension.[18]

Conversions

Between degrees

As stated, one radian is equal to

{180\circ}/{\pi}

. Thus, to convert from radians to degrees, multiply magnitude in radians by

{180\circ}/{\pi}

.

angleindegrees=magnitudeofangleinradians

180\circ
\pi

For example:

1rad=1

180\circ
\pi

57.2958\circ

2.5rad=2.5

180\circ
\pi

143.2394\circ

\pi
3

rad=

\pi
3

180\circ
\pi

=60\circ

Conversely, to convert from degrees to radians, multiply magnitude in degrees by

{\pi}/{180}rad

.

angleinradians=magnitudeofangleindegrees

\pi
180

rad

For example:

1\circ=1

\pi
180

rad0.0175rad

23\circ=23

\pi
180

rad0.4014rad

Radians can be converted to turns (one turn is the angle corresponding to a revolution) by dividing the number of radians by 2.

Between gradians

One revolution is

2\pi

radians, which equals one turn, which is by definition 400 gradians (400 gons or 400g). To convert from radians to gradians multiply the magnitude of the angle in radians by

200g/\pi

, and to convert from gradians to radians multiply the magnitude of the angle in gradians by

\pi/200rad

. For example,

1.2rad=1.2

200g
\pi

76.3944g

50g=50

\pi
200

rad0.7854rad

Usage

Mathematics

In calculus and most other branches of mathematics beyond practical geometry, angles are measured in radians. This is because radians have a mathematical naturalness that leads to a more elegant formulation of some important results.

Results in analysis involving trigonometric functions can be elegantly stated when the functions' arguments are expressed in radians. For example, the use of radians leads to the simple limit formula

\limh

\sinh
h

=1,

which is the basis of many other identities in mathematics, including

d
dx

\sinx=\cosx

d2
dx2

\sinx=-\sinx.

\tfrac{d2y}{dx2}=-y

, the evaluation of the integral
style\intdx
1+x2

,

and so on). In all such cases, it is appropriate that the arguments of the functions are treated as (dimensionless) numbers—without any reference to angles.

The trigonometric functions of angles also have simple and elegant series expansions when radians are used. For example, when x is the numerical value of an angle when the angle is expressed in radians, i.e x = angle /rad, the Taylor series for sin x becomes:

\sinx=x-

x3
3!

+

x5
5!

-

x7
7!

+.

If x were the numerical value of the angle when expressed in degrees, i.e. the number of degrees, then the series would contain messy factors involving powers of /180: if x is the number of degrees, angle/degree, the number of radians, angle/radian, is, so

\siny=

\pi
180

x-\left(

\pi
180

\right

3 x3
3!
)

+\left(

\pi
180

\right

5 x5
5!
)

-\left(

\pi
180

\right

7 x7
7!
)

+.

In a similar spirit, if angles are involved, mathematically important relationships between the sine and cosine functions and the exponential function (see, for example, Euler's formula) can be elegantly stated when the functions' arguments are magnitudes of angles expressed in radians (and messy otherwise). More generally, in complex-number theory, the arguments of these functions are (dimensionless, possibly complex) numbers—without any reference to physical angles at all.

Physics

The radian is widely used in physics when angular measurements are required. For example, angular velocity is typically expressed in the unit radian per second (rad/s). One revolution per second corresponds to 2 radians per second.

Similarly, the unit used for angular acceleration is often radian per second per second (rad/s2).

For the purpose of dimensional analysis, the units of angular velocity and angular acceleration are s−1 and s−2 respectively.

Likewise, the phase angle difference of two waves can also be expressed using the radian as the unit. For example, if the phase angle difference of two waves is (n⋅2) radians, where n is an integer, they are considered to be in phase, whilst if the phase angle difference of two waves is radians, with n an integer, they are considered to be in antiphase.

A unit of reciprocal radian or inverse radian (rad-1) is involved in derived units such as meter per radian (for angular wavelength) or newton-metre per radian (for torsional stiffness).

Prefixes and variants

Metric prefixes for submultiples are used with radians. A milliradian (mrad) is a thousandth of a radian (0.001 rad), i.e. . There are 2 × 1000 milliradians (≈ 6283.185 mrad) in a circle. So a milliradian is just under of the angle subtended by a full circle. This unit of angular measurement of a circle is in common use by telescopic sight manufacturers using (stadiametric) rangefinding in reticles. The divergence of laser beams is also usually measured in milliradians.

The angular mil is an approximation of the milliradian used by NATO and other military organizations in gunnery and targeting. Each angular mil represents of a circle and is % or 1.875% smaller than the milliradian. For the small angles typically found in targeting work, the convenience of using the number 6400 in calculation outweighs the small mathematical errors it introduces. In the past, other gunnery systems have used different approximations to ; for example Sweden used the streck and the USSR used . Being based on the milliradian, the NATO mil subtends roughly 1 m at a range of 1000 m (at such small angles, the curvature is negligible).

Prefixes smaller than milli- are useful in measuring extremely small angles. Microradians (μrad,) and nanoradians (nrad,) are used in astronomy, and can also be used to measure the beam quality of lasers with ultra-low divergence. More common is the arc second, which is  rad (around 4.8481 microradians).

History

Pre-20th century

The idea of measuring angles by the length of the arc was in use by mathematicians quite early. For example, al-Kashi (c. 1400) used so-called diameter parts as units, where one diameter part was radian. They also used sexagesimal subunits of the diameter part.[19] Newton in 1672 spoke of "the angular quantity of a body's circular motion", but used it only as a relative measure to develop an astronomical algorithm.[20]

The concept of the radian measure is normally credited to Roger Cotes, who died in 1716. By 1722, his cousin Robert Smith had collected and published Cotes' mathematical writings in a book, Harmonia mensurarum.[21] In a chapter of editorial comments, Smith gave what is probably the first published calculation of one radian in degrees, citing a note of Cotes that has not survived. Smith described the radian in everything but name – "Now this number is equal to 180 degrees as the radius of a circle to the semicircumference, this is as 1 to 3.141592653589" –, and recognized its naturalness as a unit of angular measure.[22] [23]

In 1765, Leonhard Euler implicitly adopted the radian as a unit of angle.[20] Specifically, Euler defined angular velocity as "The angular speed in rotational motion is the speed of that point, the distance of which from the axis of gyration is expressed by one."[24] Euler was probably the first to adopt this convention, referred to as the radian convention, which gives the simple formula for angular velocity . As discussed in , the radian convention has been widely adopted, while dimensionally consistent formulations require the insertion of a dimensional constant, for example .

Prior to the term radian becoming widespread, the unit was commonly called circular measure of an angle.[25] The term radian first appeared in print on 5 June 1873, in examination questions set by James Thomson (brother of Lord Kelvin) at Queen's College, Belfast. He had used the term as early as 1871, while in 1869, Thomas Muir, then of the University of St Andrews, vacillated between the terms rad, radial, and radian. In 1874, after a consultation with James Thomson, Muir adopted radian.[26] [27] [28] The name radian was not universally adopted for some time after this. Longmans' School Trigonometry still called the radian circular measure when published in 1890.[29]

In 1893 Alexander Macfarlane wrote "the true analytical argument for the circular ratios is not the ratio of the arc to the radius, but the ratio of twice the area of a sector to the square on the radius."[30] For some reason the paper was withdrawn from the published proceedings of mathematical congress held in connection with World's Columbian Exposition in Chicago (acknowledged at page 167), and privately published in his Papers on Space Analysis (1894). Macfarlane reached this idea or ratios of areas while considering the basis for hyperbolic angle which is analogously defined.

As an SI unit

As Paul Quincey et al. writes, "the status of angles within the International System of Units (SI) has long been a source of controversy and confusion."[31] In 1960, the CGPM established the SI and the radian was classified as a "supplementary unit" along with the steradian. This special class was officially regarded "either as base units or as derived units", as the CGPM could not reach a decision on whether the radian was a base unit or a derived unit. Richard Nelson writes "This ambiguity [in the classification of the supplemental units] prompted a spirited discussion over their proper interpretation." In May 1980 the Consultative Committee for Units (CCU) considered a proposal for making radians an SI base unit, using a constant, but turned it down to avoid an upheaval to current practice.

In October 1980 the CGPM decided that supplementary units were dimensionless derived units for which the CGPM allowed the freedom of using them or not using them in expressions for SI derived units,[32] on the basis that "[no formalism] exists which is at the same time coherent and convenient and in which the quantities plane angle and solid angle might be considered as base quantities" and that "[the possibility of treating the radian and steradian as SI base units] compromises the internal coherence of the SI based on only seven base units". In 1995 the CGPM eliminated the class of supplementary units and defined the radian and the steradian as "dimensionless derived units, the names and symbols of which may, but need not, be used in expressions for other SI derived units, as is convenient". Mikhail Kalinin writing in 2019 has criticized the 1980 CGPM decision as "unfounded" and says that the 1995 CGPM decision used inconsistent arguments and introduced "numerous discrepancies, inconsistencies, and contradictions in the wordings of the SI".[33]

At the 2013 meeting of the CCU, Peter Mohr gave a presentation on alleged inconsistencies arising from defining the radian as a dimensionless unit rather than a base unit. CCU President Ian M. Mills declared this to be a "formidable problem" and the CCU Working Group on Angles and Dimensionless Quantities in the SI was established.[34] The CCU met in 2021, but did not reach a consensus. A small number of members argued strongly that the radian should be a base unit, but the majority felt the status quo was acceptable or that the change would cause more problems than it would solve. A task group was established to "review the historical use of SI supplementary units and consider whether reintroduction would be of benefit", among other activities.[35] [36]

See also

References

Notes and References

  1. "The CGPM decided to interpret the supplementary units in the SI, namely the radian and the steradian, as dimensionless derived units."

  2. "One radian corresponds to the angle for which s = r, thus 1 rad = 1."

  3. Book: Ocean Optics Protocols for Satellite Ocean Color Sensor Validation, Revision 3 . 2002 . National Aeronautics and Space Administration, Goddard Space Flight Center . 12 . en.
  4. Web site: ISO 80000-3:2006 Quantities and Units - Space and Time . 17 January 2017 .
  5. "One radian corresponds to the angle for which "

  6. "Also, as alluded to in, the radian can be defined in terms of the area A of a sector, in which case it has the units m2⋅m−2."

  7. "One radian corresponds to the angle for which, thus ."

  8. Book: Bridgman . Percy Williams . Dimensional analysis . 1922 . New Haven : Yale University Press . Angular amplitude of swing [...] No dimensions..
  9. Prando . Giacomo . August 2020 . A spectral unit . Nature Physics . 16 . 8 . 888 . 2020NatPh..16..888P . 10.1038/s41567-020-0997-3 . 225445454. free .
  10. Book: Leonard . William J. . Minds-on Physics: Advanced topics in mechanics . 1999 . Kendall Hunt . 978-0-7872-5412-4 . 262 . en.
  11. French . Anthony P. . May 1992 . What happens to the 'radians'? (comment) . The Physics Teacher . 30 . 5 . 260–261 . 10.1119/1.2343535.
  12. Oberhofer . E. S. . March 1992 . What happens to the 'radians'? . The Physics Teacher . 30 . 3 . 170–171 . 1992PhTea..30..170O . 10.1119/1.2343500.
  13. Aubrecht . Gordon J. . French . Anthony P. . Iona . Mario . Welch . Daniel W. . February 1993 . The radian—That troublesome unit . The Physics Teacher . 31 . 2 . 84–87 . 1993PhTea..31...84A . 10.1119/1.2343667.
  14. ; ; ; ; ; ; ; ; ;
  15. Quincey . Paul . Brown . Richard J C . 1 June 2016 . Implications of adopting plane angle as a base quantity in the SI . Metrologia . 53 . 3 . 998–1002 . 1604.02373 . 2016Metro..53..998Q . 10.1088/0026-1394/53/3/998 . 119294905.
  16. Quincey . Paul . Brown . Richard J C . 1 August 2017 . A clearer approach for defining unit systems . Metrologia . 54 . 4 . 454–460 . 1705.03765 . 2017Metro..54..454Q . 10.1088/1681-7575/aa7160 . 119418270.
  17. Web site: Schabel . Matthias C. . Watanabe . Steven . Boost.Units FAQ – 1.79.0 . 5 May 2022 . www.boost.org . Angles are treated as units.
  18. Web site: UnityDimensions—Wolfram Language Documentation . 1 July 2022 . reference.wolfram.com.
  19. Book: Luckey, Paul. A. . Siggel. Berlin. Akademie Verlag. Translation of 1424 book. 1953. Der Lehrbrief über den kreisumfang von Gamshid b. Mas'ud al-Kasi. Treatise on the Circumference of al-Kashi. 6. 40.
  20. Book: Roche . John J. . The Mathematics of Measurement: A Critical History . 21 December 1998 . Springer Science & Business Media . 978-0-387-91581-4 . 134 . en.
  21. Web site: Biography of Roger Cotes . The MacTutor History of Mathematics . February 2005 . O'Connor . J. J. . E. F. . Robertson . 2006-04-21 . 2012-10-19 . https://web.archive.org/web/20121019161705/http://www-groups.dcs.st-and.ac.uk/~history/Printonly/Cotes.html . dead .
  22. Book: Cotes . Roger . Harmonia mensurarum . 1722 . Robert. Smith. Cambridge, England. Editoris notæ ad Harmoniam mensurarum . 94–95 . https://books.google.com/books?id=J6BGAAAAcAAJ&pg=RA2-PA95 . la. In Canone Logarithmico exhibetur Systema quoddam menfurarum numeralium, quæ Logarithmi dicuntur: atque hujus systematis Modulus is est Logarithmus, qui metitur Rationem Modularem in Corol. 6. definitam. Similiter in Canone Trigonometrico finuum & tangentium, exhibetur Systema quoddam menfurarum numeralium, quæ Gradus appellantur: atque hujus systematis Modulus is est Numerus Graduum, qui metitur Angulum Modularem modo definitun, hoc est, qui continetur in arcu Radio æquali. Eft autem hic Numerus ad Gradus 180 ut Circuli Radius ad Semicircuinferentiam, hoc eft ut 1 ad 3.141592653589 &c. Unde Modulus Canonis Trigonometrici prodibit 57.2957795130 &c. Cujus Reciprocus eft 0.0174532925 &c. Hujus moduli subsidio (quem in chartula quadam Auctoris manu descriptum inveni) commodissime computabis mensuras angulares, queinadmodum oftendam in Nota III.. In the Logarithmic Canon there is presented a certain system of numerical measures called Logarithms: and the Modulus of this system is the Logarithm, which measures the Modular Ratio as defined in Corollary 6. Similarly, in the Trigonometrical Canon of sines and tangents, there is presented a certain system of numerical measures called Degrees: and the Modulus of this system is the Number of Degrees which measures the Modular Angle defined in the manner defined, that is, which is contained in an equal Radius arc. Now this Number is equal to 180 Degrees as the Radius of a Circle to the Semicircumference, this is as 1 to 3.141592653589 &c. Hence the Modulus of the Trigonometric Canon will be 57.2957795130 &c. Whose Reciprocal is 0.0174532925 &c. With the help of this modulus (which I found described in a note in the hand of the Author) you will most conveniently calculate the angular measures, as mentioned in Note III..
  23. Book: Gowing . Ronald . Roger Cotes - Natural Philosopher . 27 June 2002 . Cambridge University Press . 978-0-521-52649-4 .
  24. Book: Euler . Leonhard . Bruce . Ian . Theoria Motus Corporum Solidorum seu Rigidorum. Theory of the motion of solid or rigid bodies. latin. Definition 6, paragraph 316.
  25. Isaac Todhunter, Plane Trigonometry: For the Use of Colleges and Schools, p. 10, Cambridge and London: MacMillan, 1864
  26. Book: Cajori, Florian. Florian Cajori. 1929. History of Mathematical Notations. 2. 147–148. Dover Publications. 0-486-67766-4. registration.
  27. Web site: Earliest Known Uses of Some of the Words of Mathematics. Nov 23, 2009. Sep 30, 2011. Miller. Jeff .
  28. Frederick Sparks, Longmans' School Trigonometry, p. 6, London: Longmans, Green, and Co., 1890 (1891 edition)
  29. A. Macfarlane (1893) "On the definitions of the trigonometric functions", page 9, link at Internet Archive
  30. Quincey . Paul . Mohr . Peter J . Phillips . William D . Angles are inherently neither length ratios nor dimensionless . Metrologia . 1 August 2019 . 56 . 4 . 043001 . 10.1088/1681-7575/ab27d7. 1909.08389. 2019Metro..56d3001Q . 198428043 .
  31. Nelson . Robert A. . The supplementary units . The Physics Teacher . March 1984 . 22 . 3 . 188–193 . 10.1119/1.2341516. 1984PhTea..22..188N .
  32. Kalinin . Mikhail I . On the status of plane and solid angles in the International System of Units (SI) . Metrologia . 1 December 2019 . 56 . 6 . 065009 . 10.1088/1681-7575/ab3fbf. 1810.12057. 2019Metro..56f5009K . 53627142 .
  33. Consultative Committee for Units. Consultative Committee for Units. Report of the 21st meeting to the International Committee for Weights and Measures . 11–12 June 2013. 18–20.
  34. Consultative Committee for Units. Consultative Committee for Units. Report of the 25th meeting to the International Committee for Weights and Measures . 21–23 September 2021. 16–17.
  35. Web site: CCU Task Group on angle and dimensionless quantities in the SI Brochure (CCU-TG-ADQSIB) . BIPM . 26 June 2022.