In mathematics, a Hopf algebra, H, is quasitriangular[1] if there exists an invertible element, R, of
H ⊗ H
R \Delta(x)R-1=(T\circ\Delta)(x)
x\inH
\Delta
T:H ⊗ H\toH ⊗ H
T(x ⊗ y)=y ⊗ x
(\Delta ⊗ 1)(R)=R13 R23
(1 ⊗ \Delta)(R)=R13 R12
where
R12=\phi12(R)
R13=\phi13(R)
R23=\phi23(R)
\phi12:H ⊗ H\toH ⊗ H ⊗ H
\phi13:H ⊗ H\toH ⊗ H ⊗ H
\phi23:H ⊗ H\toH ⊗ H ⊗ H
\phi12(a ⊗ b)=a ⊗ b ⊗ 1,
\phi13(a ⊗ b)=a ⊗ 1 ⊗ b,
\phi23(a ⊗ b)=1 ⊗ a ⊗ b.
R is called the R-matrix.
As a consequence of the properties of quasitriangularity, the R-matrix, R, is a solution of the Yang–Baxter equation (and so a module V of H can be used to determine quasi-invariants of braids, knots and links). Also as a consequence of the properties of quasitriangularity,
(\epsilon ⊗ 1)R=(1 ⊗ \epsilon)R=1\inH
R-1=(S ⊗ 1)(R)
R=(1 ⊗ S)(R-1)
(S ⊗ S)(R)=R
S2(x)=uxu-1
u:=m(S ⊗ 1)R21
It is possible to construct a quasitriangular Hopf algebra from a Hopf algebra and its dual, using the Drinfeld quantum double construction.
If the Hopf algebra H is quasitriangular, then the category of modules over H is braided with braiding
cU,V(u ⊗ v)=T\left(R ⋅ (u ⊗ v)\right)=T\left(R1u ⊗ R2v\right)
The property of being a quasi-triangular Hopf algebra is preserved by twisting via an invertible element
F=\sumifi ⊗ fi\inl{A ⊗ A}
(\varepsilon ⊗ id)F=(id ⊗ \varepsilon)F=1
(F ⊗ 1) ⋅ (\Delta ⊗ id)(F)=(1 ⊗ F) ⋅ (id ⊗ \Delta)(F)
Furthermore,
u=\sumifiS(fi)
S'(a)=uS(a)u-1
. Susan Montgomery . Hopf algebras and their actions on rings . Regional Conference Series in Mathematics . 82 . Providence, RI . . 1993 . 0-8218-0738-2 . 0793.16029 .
. Susan Montgomery . Hans-Jürgen Schneider . Hans-Jürgen . Schneider . New directions in Hopf algebras . Mathematical Sciences Research Institute Publications . 43 . Cambridge University Press . 2002 . 978-0-521-81512-3 . 0990.00022 .