In mathematics, a quasi-finite field[1] is a generalisation of a finite field. Standard local class field theory usually deals with complete valued fields whose residue field is finite (i.e. non-archimedean local fields), but the theory applies equally well when the residue field is only assumed quasi-finite.[2]
A quasi-finite field is a perfect field K together with an isomorphism of topological groups
\phi:\hat{Z}\to\operatorname{Gal}(Ks/K),
\widehat{Z
This definition is equivalent to saying that K has a unique (necessarily cyclic) extension Kn of degree n for each integer n ≥ 1, and that the union of these extensions is equal to Ks. Moreover, as part of the structure of the quasi-finite field, there is a generator Fn for each Gal(Kn/K), and the generators must be coherent, in the sense that if n divides m, the restriction of Fm to Kn is equal to Fn.
The most basic example, which motivates the definition, is the finite field K = GF(q). It has a unique cyclic extension of degree n, namely Kn = GF(qn). The union of the Kn is the algebraic closure Ks. We take Fn to be the Frobenius element; that is, Fn(x) = xq.
Another example is K = C((T)), the ring of formal Laurent series in T over the field C of complex numbers. (These are simply formal power series in which we also allow finitely many terms of negative degree.) Then K has a unique cyclic extension
Kn=C((T1/n))
1/n | |
F | |
n(T |
)=e2\piT1/n.