Quantum invariant explained
In the mathematical field of knot theory, a quantum knot invariant or quantum invariant of a knot or link is a linear sum of colored Jones polynomial of surgery presentations of the knot complement.[1] [2]
List of invariants
See also
Further reading
- Book: Princeton University Press . 978-0691085777 . Princeton, N.J . Topology of 4-manifolds . Freedman, Michael H. . 1990 . 2220094M . registration .
- Book: World Scientific Publishing Company . 9789810246754 . Quantum Invariants . Ohtsuki, Tomotada . December 2001 . 9195378M .
External links
Notes and References
- Maxim . Kontsevich . Vassiliev's knot invariants . Adv. Soviet Math. . 16 . 1993 . 137.
- Watanabe. Tadayuki. Knotted trivalent graphs and construction of the LMO invariant from triangulations. Osaka J. Math.. 2007. 44. 2. 351. 4 December 2012.
- math/0406194. Letzter. Gail. Gail Letzter . Invariant differential operators for quantum symmetric spaces, II. 2004.
- math/0009222. Sawon. Justin. Topological quantum field theory and hyperkähler geometry. 2000.
- Web site: The invariant of Turaev-Viro from Group category . Jerome. Petit. hal.archives-ouvertes.fr . 1999 . 2019-11-04.
- Web site: Generators of
-Character Varieties of Arbitrary Rank Free Groups . The 7th KAIST Geometric Topology Fair . Sean. Lawton. June 28, 2007 . 13 January 2022 . https://web.archive.org/web/20070720181358/http://knot.kaist.ac.kr/7thkgtf/Lawton1.pdf . 20 July 2007 . dead.
- Reshetikhin . N. . Turaev . V. G. . 10.1007/BF01239527 . 3 . Inventiones Mathematicae . 1091619 . 547–597 . Invariants of 3-manifolds via link polynomials and quantum groups . 103 . 1991.