Coherent control explained
Coherent control is a quantum mechanics-based method for controlling dynamic processes by light. The basic principle is to control quantum interference phenomena, typically by shaping the phase of laser pulses.[1] [2] The basic ideas have proliferated, finding vast application in spectroscopy mass spectra, quantum information processing, laser cooling, ultracold physics and more.
Brief History
The initial idea was to control the outcome of chemical reactions. Two approaches were pursued:
- in the time domain, a "pump-dump" scheme where the control is the time delay between pulses[3] [4]
- in the frequency domain, interfering pathways controlled by one and three photons.[5]
The two basic methods eventually merged with the introduction of optimal control theory.[6] [7]
Experimental realizations soon followed in the time domain[8] and in the frequency domain.[9] Two interlinked developments accelerated the field of coherent control: experimentally, it was the development of pulse shaping by a spatial light modulator[10] [11] and its employment in coherent control.[12] The second development was the idea of automatic feedback control[13] and its experimental realization.[14] [15]
Controllability
Coherent control aims to steer a quantum system from an initial state to a target state via an external field. For given initial and final (target) states, the coherent control is termed state-to-state control. A generalization is steering simultaneously an arbitrary set of initial pure states to an arbitrary set of final states i.e. controlling a unitary transformation. Such an application sets the foundation for a quantum gate operation.[16] [17] [18]
Controllability of a closed quantum system has been addressed by Tarn and Clark.[19] Their theorem based in control theory states that for a finite-dimensional, closed-quantum system, the system is completely controllable, i.e. an arbitrary unitary transformation of the system can be realized by an appropriate application of the controls[20] if the control operators and the unperturbed Hamiltonian generate the Lie algebra of all Hermitian operators. Complete controllability implies state-to-state controllability.
The computational task of finding a control field for a particular state-to-state transformation is difficult and becomes more difficult with the increase in the size of the system. This task is in the class of hard inversion problems of high computational complexity. The algorithmic task of finding the field that generates a unitary transformation scales factorial more difficult with the size of the system. This is because a larger number of state-to-state control fields have to be found without interfering with the other control fields. It has been shown that solving general quantum optimal control problems is equivalent to solving Diophantine equations. It therefore follows from the negative answer to Hilbert's tenth problem that quantum optimal controllability is in general undecidable.[21]
Once constraints are imposed controllability can be degraded. For example, what is the minimum time required to achieve a control objective?[22] This is termed the "quantum speed limit". The speed limit can be calculated by quantizing Ulam's control conjecture.[23]
Constructive approach to coherent control
The constructive approach uses a set of predetermined control fields for which the control outcome can be inferred.
The pump dump scheme in the time domain and the three vs one photon interference scheme in the frequency domain are prime examples. Another constructive approach is based on adiabatic ideas. The most well studied method is Stimulated raman adiabatic passage STIRAP [24] which employs an auxiliary state to achieve complete state-to-state population transfer.
One of the most prolific generic pulse shapes is a chirped pulse a pulse with a varying frequency in time.[25] [26]
Optimal control
Optimal control as applied in coherent control seeks the optimal control field for steering a quantum system to its objective.[7] For state-to-state control the objective is defined as the maximum overlap at the final time T with the state
:
where the initial state is
. The time dependent control Hamiltonian has the typical form:
H(t)=H0+\mu ⋅ \epsilon(t)
where
is the control field. Optimal control solves for the optimal field
using the
calculus of variations introducing
Lagrange multipliers. A new objective functional is defined
J'=J+
\langle\chi(t)|\left(i
-H(\epsilon(t))\right)|\psi(t)\rangledt+λ
|\epsilon(t)|2dt
where
is a wave function like
Lagrange multiplier and the
parameter regulates the integral intensity.Variation of
with respect to
and
leads to two coupled
Schrödinger equations. A forward equation for
with initial condition
|\psi(0)\rangle=|\phii\rangle
and a backward equation for the Lagrange multiplier
with final condition
|\chi(T)\rangle=|\phif\rangle
. Finding a solution requires an iterative approach. Different algorithms have been applied for obtaining the control field such as the Krotov method.
[27] A local in time alternative method has been developed,[28] where at each time step, the field is calculated to direct the state to the target. A related method has been called tracking [29]
Experimental applications
Some applications of coherent control are
Another important issue is the spectral selectivity of two photon coherent control.[43] These concepts can be applied to single pulse Raman spectroscopy and microscopy.[44]
As one of the cornerstones for enabling quantum technologies, optimal quantum control keeps evolving and expanding into areas as diverse as quantum-enhanced sensing, manipulation of single spins, photons, or atoms, optical spectroscopy, photochemistry, magnetic resonance (spectroscopy as well as medical imaging), quantum information processing, and quantum simulation.[45]
Further reading
- Principles of the Quantum Control of Molecular Processes, by Moshe Shapiro, Paul Brumer, pp. 250. . Wiley-VCH, (2003).
- "Quantum control of Molecular Processes", Moshe Shapiro and Paul Brumer, Wiley-VCH (2012).
- Rice, Stuart Alan, and Meishan Zhao. Optical control of molecular dynamics. New York: John Wiley, 2000.
- d'Alessandro, Domenico. Introduction to quantum control and dynamics. CRC press, 2007.
- David J. Tannor, "Introduction to Quantum Mechanics: A Time-dependent Perspective", (University Science Books, Sausalito, 2007).
Notes and References
- Gordon . Robert J. . Rice . Stuart A. . Active control of the dynamics of atoms and molecules . Annual Review of Physical Chemistry . 48 . 1 . 1997 . 0066-426X . 10.1146/annurev.physchem.48.1.601 . 15012451 . 601–641. 1997ARPC...48..601G .
- Book: Shapiro . Moshe . Brumer . Paul . Coherent Control of Atomic, Molecular, and Electronic Processes. Advances in Atomic, Molecular and Optical Physics . Academic Press. 2000 . 42. 978-0-12-003842-8 . 1049-250X . 10.1016/s1049-250x(08)60189-5 . 287–345.
- Tannor . David J. . Rice . Stuart A. . Control of selectivity of chemical reaction via control of wave packet evolution . The Journal of Chemical Physics. 83 . 10 . 1985-11-15 . 0021-9606 . 10.1063/1.449767 . 5013–5018.
- Tannor . David J. . Kosloff . Ronnie . Rice . Stuart A. . Coherent pulse sequence induced control of selectivity of reactions: Exact quantum mechanical calculations . The Journal of Chemical Physics. 85 . 10 . 1986-11-15 . 0021-9606 . 10.1063/1.451542 . 5805–5820. 94455480 .
- Brumer . Paul . Shapiro . Moshe . Control of unimolecular reactions using coherent light . Chemical Physics Letters. 126 . 6 . 1986 . 0009-2614 . 10.1016/s0009-2614(86)80171-3 . 541–546.
- Peirce . Anthony P. . Dahleh . Mohammed A. . Rabitz . Herschel . Optimal control of quantum-mechanical systems: Existence, numerical approximation, and applications . Physical Review A. 37 . 12 . 1988-06-01 . 0556-2791 . 10.1103/physreva.37.4950 . 9899641 . 4950–4964.
- Kosloff . R. . Rice . S.A. . Gaspard . P. . Tersigni . S. . Tannor . D.J. . Wavepacket dancing: Achieving chemical selectivity by shaping light pulses . Chemical Physics. 139 . 1 . 1989 . 0301-0104 . 10.1016/0301-0104(89)90012-8 . 201–220.
- Baumert . T. . Engel . V. . Meier . C. . Gerber . G. . High laser field effects in multiphoton ionization of Na2. Experiment and quantum calculations . Chemical Physics Letters. 200 . 5 . 1992 . 0009-2614 . 10.1016/0009-2614(92)80080-u . 488–494.
- Zhu . L. . Kleiman . V. . Li . X. . Lu . S. P. . Trentelman . K. . Gordon . R. J. . Coherent Laser Control of the Product Distribution Obtained in the Photoexcitation of HI . Science. 270 . 5233 . 1995-10-06 . 0036-8075 . 10.1126/science.270.5233.77 . 77–80. 98705974 .
- Weiner . A. M. . Femtosecond pulse shaping using spatial light modulators . Review of Scientific Instruments. 71 . 5 . 2000 . 0034-6748 . 10.1063/1.1150614 . 1929–1960. 2010-07-06 . https://wayback.archive-it.org/all/20070417213918/http://cobweb.ecn.purdue.edu/~fsoptics/articles/Femtosecond_pulse_shaping-Weiner.pdf . 17 April 2007 . live.
- Liquid Crystal Optically Addressed Spatial Light Modulator, http://www-optique.enst-bretagne.fr/18_LCOASLM.htm
- Kawashima . Hitoshi . Wefers . Marc M. . Nelson . Keith A. . Femtosecond Pulse Shaping, Multiple-Pulse Spectroscopy, and Optical Control . Annual Review of Physical Chemistry. 46 . 1 . 1995 . 0066-426X . 10.1146/annurev.pc.46.100195.003211 . 24341370 . 627–656.
- Judson . Richard S. . Rabitz . Herschel . Teaching lasers to control molecules . Physical Review Letters. 68 . 10 . 1992-03-09 . 0031-9007 . 10.1103/physrevlett.68.1500 . 10045147 . 1500–1503.
- Assion . A. . Control of Chemical Reactions by Feedback-Optimized Phase-Shaped Femtosecond Laser Pulses . Science. 282 . 5390 . 1998-10-30 . 10.1126/science.282.5390.919 . 9794756 . 919–922.
- Brif . Constantin . Chakrabarti . Raj . Rabitz . Herschel . Control of quantum phenomena: past, present and future . New Journal of Physics. 12 . 7 . 2010-07-08 . 1367-2630 . 10.1088/1367-2630/12/7/075008 . 075008. free. 0912.5121 .
- Tesch . Carmen M. . Kurtz . Lukas . de Vivie-Riedle . Regina . Applying optimal control theory for elements of quantum computation in molecular systems . Chemical Physics Letters. 343 . 5–6 . 2001 . 0009-2614 . 10.1016/s0009-2614(01)00748-5 . 633–641.
- Palao . José P. . Kosloff . Ronnie . Quantum Computing by an Optimal Control Algorithm for Unitary Transformations . Physical Review Letters. 89 . 18 . 2002-10-14 . 0031-9007 . 10.1103/physrevlett.89.188301 . 12398642 . quant-ph/0204101 . 188301. 9237548 .
- Rabitz . Herschel . Hsieh . Michael . Rosenthal . Carey . Landscape for optimal control of quantum-mechanical unitary transformations . Physical Review A. 72 . 5 . 2005-11-30 . 1050-2947 . 10.1103/physreva.72.052337 . 052337.
- Huang . Garng M. . Tarn . T. J. . Clark . John W. . On the controllability of quantum‐mechanical systems . Journal of Mathematical Physics. 24 . 11 . 1983 . 0022-2488 . 10.1063/1.525634 . 2608–2618.
- Ramakrishna . Viswanath . Salapaka . Murti V. . Dahleh . Mohammed . Rabitz . Herschel . Peirce . Anthony . Controllability of molecular systems . Physical Review A. 51 . 2 . 1995-02-01 . 1050-2947 . 10.1103/physreva.51.960 . 9911672 . 960–966.
- Bondar. Denys I.. Pechen. Alexander N.. 2020-01-27. Uncomputability and complexity of quantum control. Scientific Reports. en. 10. 1. 1195. 10.1038/s41598-019-56804-1. 31988295 . 6985236 . 1907.10082. 2045-2322.
- Caneva . T. . Murphy . M. . Calarco . T. . Fazio . R. . Montangero . S. . Giovannetti . V. . Santoro . G. E. . Optimal Control at the Quantum Speed Limit . Physical Review Letters . 103 . 24 . 2009-12-07 . 0031-9007 . 10.1103/physrevlett.103.240501 . 20366188 . 240501. 0902.4193. 43509791 .
- Gruebele . M. . Wolynes . P. G. . Quantizing Ulam's control conjecture . Physical Review Letters . 99 . 6 . 2007-08-06 . 0031-9007 . 10.1103/PhysRevLett.99.060201 . 060201. 17930806 .
- Unanyan . R. . Fleischhauer . M. . Shore . B.W. . Bergmann . K. . Robust creation and phase-sensitive probing of superposition states via stimulated Raman adiabatic passage (STIRAP) with degenerate dark states . Optics Communications. 155 . 1–3 . 1998 . 0030-4018 . 10.1016/s0030-4018(98)00358-7 . 144–154.
- Ruhman . S. . Kosloff . R. . Application of chirped ultrashort pulses for generating large-amplitude ground-state vibrational coherence: a computer simulation . Journal of the Optical Society of America B. 7 . 8 . 1990-08-01 . 0740-3224 . 10.1364/josab.7.001748 . 1748–1752.
- Cerullo . G. . Bardeen . C.J. . Wang . Q. . Shank . C.V. . High-power femtosecond chirped pulse excitation of molecules in solution . Chemical Physics Letters. 262 . 3–4 . 1996 . 0009-2614 . 10.1016/0009-2614(96)01092-5 . 362–368.
- Somlói . József . Kazakov . Vladimir A. . Tannor . David J. . Controlled dissociation of I2 via optical transitions between the X and B electronic states . Chemical Physics. 172 . 1 . 1993 . 0301-0104 . 10.1016/0301-0104(93)80108-l . 85–98. free .
- Kosloff . Ronnie . Hammerich . Audrey Dell . Tannor . David . Excitation without demolition: Radiative excitation of ground-surface vibration by impulsive stimulated Raman scattering with damage control . Physical Review Letters. 69 . 15 . 1992-10-12 . 0031-9007 . 10.1103/physrevlett.69.2172 . 10046417 . 2172–2175.
- Chen . Yu . Gross . Peter . Ramakrishna . Viswanath . Rabitz . Herschel . Mease . Kenneth . Competitive tracking of molecular objectives described by quantum mechanics . The Journal of Chemical Physics. 102 . 20 . 1995-05-22 . 0021-9606 . 10.1063/1.468998 . 8001–8010.
- Levis . R. J. . Rabitz . H. A. . Closing the Loop on Bond Selective Chemistry Using Tailored Strong Field Laser Pulses . The Journal of Physical Chemistry A. 106 . 27 . 2002 . 1089-5639 . 10.1021/jp0134906 . 6427–6444.
- Dantus . Marcos . Lozovoy . Vadim V. . Experimental Coherent Laser Control of Physicochemical Processes . Chemical Reviews. 104 . 4 . 2004 . 0009-2665 . 10.1021/cr020668r . 15080713 . 1813–1860.
- Levin . Liat . Skomorowski . Wojciech . Rybak . Leonid . Kosloff . Ronnie . Koch . Christiane P. . 5. Amitay . Zohar . Coherent Control of Bond Making . Physical Review Letters . 114 . 23 . 2015-06-10 . 0031-9007 . 10.1103/physrevlett.114.233003 . 26196798 . 233003. 1411.1542. 32145743 .
- Prokhorenko . V. I. . Coherent Control of Retinal Isomerization in Bacteriorhodopsin . Science. 313 . 5791 . 2006-09-01 . 0036-8075 . 10.1126/science.1130747 . 16946063 . 1257–1261. 8804783 .
- Wohlleben . Wendel . Buckup . Tiago . Herek . Jennifer L. . Motzkus . Marcus . Coherent Control for Spectroscopy and Manipulation of Biological Dynamics . ChemPhysChem. 6 . 5 . 2005-05-13 . 1439-4235 . 10.1002/cphc.200400414 . 15884067 . 850–857.
- Khaneja . Navin . Reiss . Timo . Kehlet . Cindie . Schulte-Herbrüggen . Thomas . Glaser . Steffen J. . Optimal control of coupled spin dynamics: design of NMR pulse sequences by gradient ascent algorithms . Journal of Magnetic Resonance. 172 . 2 . 2005 . 1090-7807 . 10.1016/j.jmr.2004.11.004 . 15649756 . 296–305.
- Wright . M. J. . Gensemer . S. D. . Vala . J. . Kosloff . R. . Gould . P. L. . Control of Ultracold Collisions with Frequency-Chirped Light . Physical Review Letters. 95 . 6 . 2005-08-01 . 0031-9007 . 10.1103/physrevlett.95.063001 . 16090943 . 063001.
- García-Ripoll . J. J. . Zoller . P. . Cirac . J. I. . Speed Optimized Two-Qubit Gates with Laser Coherent Control Techniques for Ion Trap Quantum Computing . Physical Review Letters . 91 . 15 . 2003-10-07 . 0031-9007 . 10.1103/physrevlett.91.157901 . 14611499 . 157901. quant-ph/0306006. 119414046 .
- Larsen, T. W., K. D. Petersson, F. Kuemmeth, T. S. Jespersen, P. Krogstrup, and C. M. Marcus. "Coherent control of a transmon qubit with a nanowire-based Josephson junction." Bulletin of the American Physical Society 60 (2015).
- Scharfenberger . Burkhard . Munro . William J . Nemoto . Kae . Kae Nemoto . Coherent control of an NV− center with one adjacent 13C . New Journal of Physics . 16 . 9 . 2014-09-25 . 1367-2630 . 10.1088/1367-2630/16/9/093043 . 093043. free. 1404.0475.
- Weidinger . Daniel . Gruebele . Martin . Quantum computation with vibrationally excited polyatomic molecules: Effects of rotation, level structure, and field gradients . Molecular Physics . 105 . 13–14 . 2007-07-01 . 10.1080/00268970701504335 . 1999-20087. 122494939 .
- Corkum . P. B. . Krausz . Ferenc . Attosecond science . Nature Physics . Springer Science and Business Media LLC . 3 . 6 . 2007 . 1745-2473 . 10.1038/nphys620 . 381–387. 2007NatPh...3..381C .
- Boutu . W. . Haessler . S. . Merdji . H. . Breger . P. . Waters . G. . Stankiewicz . M. . Frasinski . L. J. . Taieb . R. . Caillat . J. . Maquet . A. . Monchicourt . P. . Carre . B. . Salieres . P. . 5. Coherent control of attosecond emission from aligned molecules . Nature Physics . Springer Science and Business Media LLC . 4 . 7 . 2008-05-04 . 1745-2473 . 10.1038/nphys964 . 10044/1/12527 . 545–549. free .
- Meshulach . Doron . Silberberg . Yaron . Coherent quantum control of two-photon transitions by a femtosecond laser pulse . Nature . Springer Science and Business Media LLC . 396 . 6708 . 1998 . 0028-0836 . 10.1038/24329 . 239–242. 41953962 .
- Silberberg . Yaron . Quantum Coherent Control for Nonlinear Spectroscopy and Microscopy . Annual Review of Physical Chemistry. 60 . 1 . 2009 . 0066-426X . 10.1146/annurev.physchem.040808.090427 . 18999997 . 277–292.
- Glaser . Steffen J. . Boscain . Ugo . Calarco . Tommaso . Koch . Christiane P. . Köckenberger . Walter . Kosloff . Ronnie . Kuprov . Ilya . Luy . Burkhard . Schirmer . Sophie . Schulte-Herbrüggen . Thomas . Sugny . Dominique . Wilhelm . Frank K. . 5. Training Schrödinger's cat: quantum optimal control . The European Physical Journal D . 69 . 12 . 2015 . 1434-6060 . 10.1140/epjd/e2015-60464-1 . 1–24. free. 1508.00442.