In mathematical logic, the quantifier rank of a formula is the depth of nesting of its quantifiers. It plays an essential role in model theory.
Notice that the quantifier rank is a property of the formula itself (i.e. the expression in a language). Thus two logically equivalent formulae can have different quantifier ranks, when they express the same thing in different ways.
Quantifier Rank of a Formula in First-order language (FO)
Let φ be a FO formula. The quantifier rank of φ, written qr(φ), is defined as
qr(\varphi)=0
qr(\varphi1\land\varphi2)=qr(\varphi1\lor\varphi2)=max(qr(\varphi1),qr(\varphi2))
qr(lnot\varphi)=qr(\varphi)
qr(\existsx\varphi)=qr(\varphi)+1
qr(\forallx\varphi)=qr(\varphi)+1
Remarks
qr(\varphi)\len
Quantifier Rank of a higher order Formula
qr([LFP\phi]y)=1+qr(\phi)
\forallx\existsyR(x,y)
\forallxR(y,x)\wedge\existsxR(x,y)
R(x,y)\wedgex ≠ y
\forallx\existsy\existsz((x ≠ y\wedgexRy)\wedge(x ≠ z\wedgezRx))
\forallx(\existsy(x ≠ y\wedgexRy))\wedge\existsz(x ≠ z\wedgezRx))