Quantifier rank explained

In mathematical logic, the quantifier rank of a formula is the depth of nesting of its quantifiers. It plays an essential role in model theory.

Notice that the quantifier rank is a property of the formula itself (i.e. the expression in a language). Thus two logically equivalent formulae can have different quantifier ranks, when they express the same thing in different ways.

Definition

Quantifier Rank of a Formula in First-order language (FO)

Let φ be a FO formula. The quantifier rank of φ, written qr(φ), is defined as

qr(\varphi)=0

, if φ is atomic.

qr(\varphi1\land\varphi2)=qr(\varphi1\lor\varphi2)=max(qr(\varphi1),qr(\varphi2))

.

qr(lnot\varphi)=qr(\varphi)

.

qr(\existsx\varphi)=qr(\varphi)+1

.

qr(\forallx\varphi)=qr(\varphi)+1

.

Remarks

qr(\varphi)\len

.

Quantifier Rank of a higher order Formula

qr([LFP\phi]y)=1+qr(\phi)

Examples

\forallx\existsyR(x,y)

\forallxR(y,x)\wedge\existsxR(x,y)

R(x,y)\wedgexy

\forallx\existsy\existsz((xy\wedgexRy)\wedge(xz\wedgezRx))

\forallx(\existsy(xy\wedgexRy))\wedge\existsz(xz\wedgezRx))

See also

References

External links