Q-gamma function explained

In q-analog theory, the

q

-gamma function, or basic gamma function, is a generalization of the ordinary gamma function closely related to the double gamma function. It was introduced by . It is given by\Gamma_q(x) = (1-q)^\prod_^\infty \frac=(1-q)^\,\fracwhen

|q|<1

, and \Gamma_q(x)=\frac(q-1)^q^ if

|q|>1

. Here

(;)infty

is the infinite q-Pochhammer symbol. The

q

-gamma function satisfies the functional equation\Gamma_q(x+1) = \frac\Gamma_q(x)=[x]_q\Gamma_q(x)In addition, the

q

-gamma function satisfies the q-analog of the Bohr–Mollerup theorem, which was found by Richard Askey .
For non-negative integers n,\Gamma_q(n)=[n-1]_q!where

[]q

is the q-factorial function. Thus the

q

-gamma function can be considered as an extension of the q-factorial function to the real numbers.

The relation to the ordinary gamma function is made explicit in the limit\lim_ \Gamma_q(x) = \Gamma(x).There is a simple proof of this limit by Gosper. See the appendix of .

Transformation properties

The

q

-gamma function satisfies the q-analog of the Gauss multiplication formula :\Gamma_q(nx)\Gamma_r(1/n)\Gamma_r(2/n)\cdots\Gamma_r((n-1)/n)=\left(\frac\right)^\Gamma_r(x)\Gamma_r(x+1/n)\cdots\Gamma_r(x+(n-1)/n), \ r=q^n.

Integral representation

The

q

-gamma function has the following integral representation :\frac=\frac\int_0^\infty\frac.

Stirling formula

Moak obtained the following q-analogue of the Stirling formula (see):\log\Gamma_q(x)\sim(x-1/2)\log[x]_q+\frac+C_+\fracH(q-1)\log q+\sum_^\infty\frac\left(\frac\right)^\hat^x p_(\hat^x), \ x\to\infty,\hat= \left\,C_q = \frac \log(2\pi)+\frac\log\left(\frac\right)-\frac\log q+\log\sum_^\infty \left(r^ - r^\right),where

r=\exp(4\pi2/logq)

,

H

denotes the Heaviside step function,

Bk

stands for the Bernoulli number,

Li2(z)

is the dilogarithm, and

pk

is a polynomial of degree

k

satisfying p_k(z)=z(1-z)p'_(z)+(kz+1)p_(z), p_0=p_=1, k=1,2,\cdots.

Raabe-type formulas

Due to I. Mező, the q-analogue of the Raabe formula exists, at least if we use the q-gamma function when

|q|>1

. With this restriction \int_0^1\log\Gamma_q(x)dx=\frac+\log\sqrt+\log(q^;q^)_\infty \quad(q>1). El Bachraoui considered the case

0<q<1

and proved that \int_0^1\log\Gamma_q(x)dx=\frac\log (1-q) - \frac+\log(q;q)_\infty \quad(0

Special values

The following special values are known.[1] \Gamma_\left(\frac12\right)=\frac \, \Gamma \left(\frac\right),\Gamma_\left(\frac12\right)=\frac \, \Gamma \left(\frac\right),\Gamma_\left(\frac12\right)=\frac \, \Gamma \left(\frac\right),\Gamma_\left(\frac12\right)=\frac \, \Gamma \left(\frac\right).These are the analogues of the classical formula

\Gamma\left(12\right)=\sqrt\pi
.

Moreover, the following analogues of the familiar identity

\Gamma\left(
14\right)\Gamma\left(34\right)=\sqrt2\pi
hold true:\Gamma_\left(\frac14\right)\Gamma_\left(\frac34\right)=\frac \, \Gamma \left(\frac\right)^2,\Gamma_\left(\frac14\right)\Gamma_\left(\frac34\right)=\frac \, \Gamma \left(\frac\right)^2,\Gamma_\left(\frac14\right)\Gamma_\left(\frac34\right)=\frac \, \Gamma \left(\frac\right)^2.

Matrix Version

Let

A

be a complex square matrix and Positive-definite matrix. Then a q-gamma matrix function can be defined by q-integral:[2] \Gamma_q(A):=\int_0^t^E_q(-qt)\mathrm_q t where

Eq

is the q-exponential function.

Other q-gamma functions

For other q-gamma functions, see Yamasaki 2006.[3]

Numerical computation

An iterative algorithm to compute the q-gamma function was proposed by Gabutti and Allasia.[4]

Further reading

Notes and References

  1. Mező . István . 2011 . Several special values of Jacobi theta functions . 1106.1042 . cs2 . math.NT.
  2. Salem . Ahmed . June 2012 . On a q-gamma and a q-beta matrix functions . Linear and Multilinear Algebra . 60 . 6 . 683–696 . 10.1080/03081087.2011.627562 . 123011613 .
  3. Yamasaki . Yoshinori . On q-Analogues of the Barnes Multiple Zeta Functions . Tokyo Journal of Mathematics . December 2006 . 29 . 2 . 413–427 . math/0412067 . 10.3836/tjm/1170348176 . 2284981 . 1192.11060. 14082358 .
  4. Gabutti . Bruno . Allasia . Giampietro . Evaluation of q-gamma function and q-analogues by iterative algorithms . Numerical Algorithms . 17 September 2008 . 49 . 1–4 . 159–168 . 10.1007/s11075-008-9196-5. 2008NuAlg..49..159G . 6314057 .