In mathematics, the q-Bessel polynomials are a family of basic hypergeometric orthogonal polynomials in the basic Askey scheme. give a detailed list of their properties.
The polynomials are given in terms of basic hypergeometric functions by [1] :
yn(x;a;q)= {}2\phi1\left(\begin{matrix}q-n&-aqn\ 0\end{matrix};q,qx\right).
K(x;a;q).
infty | ||
\sum | \left( | |
k=0 |
ak | |
(q;q)n |
*qk+1*ym
k;a;q)*y | |
*(q | |
n |
k;a;q)\right)=(q;q) | |
*(q | |
n |
n;q) | |
*(-aq | |
infty |
an*qn+1 | |
1+aq2n |
\deltamn
n;q) | |
(q;q) | |
infty |