Proximal operator explained

f

from a Hilbert space

l{X}

to

[-infty,+infty]

, and is defined by: [2]

\operatorname{prox}f(v)=\argminx\inl{X

} \left(f(x) + \frac 1 2 \|x - v\|_\mathcal^2\right). For any function in this class, the minimizer of the right-hand side above is unique, hence making the proximal operator well-defined. The proximal operator is used in proximal gradient methods, which is frequently used in optimization algorithms associated with non-differentiable optimization problems such as total variation denoising.

Properties

The

prox

of a proper, lower semi-continuous convex function

f

enjoys several useful properties for optimization.

proxf

are minimizers of

f

:

\{x\inl{X} | proxfx=x\}=\argminf

.

\argminf\varnothing

, then for any initial point

x0\inl{X}

, the recursion

(\foralln\inN)xn+1=proxfxn

yields convergence

xn\tox\in\argminf

as

n\to+infty

. This convergence may be weak if

l{X}

is infinite dimensional.[3]

f

is the 0-

infty

indicator function

\iotaC

of a nonempty, closed, convex set

C

we have that
\begin{align} \operatorname{prox}
\iotaC

(x) &=

\operatorname{argmin}\limits
y \begin{cases} 1
2

\left\|x-y

2
\right\|
2

&ify\inC\\ +infty&ify\notinC\end{cases}\\ &=\operatorname{argmin}\limitsy

1
2

\left\|x-y

2
\right\|
2

\end{align}

showing that the proximity operator is indeed a generalisation of the projection operator.

(\forall(x,y)\inl{X}2)\|proxfx-

2
prox
fy\|

\leq\langlex-y|proxfx-proxfy\rangle

.

Mλ

of a function

λf

by the following identity:

\nablaMλ(x)=

1
λ

(x-proxλ(x))

.

f

is characterized by inclusion

p=\operatorname{prox}f(x)\Leftrightarrowx-p\in\partialf(p)

, where

\partialf

is the subdifferential of

f

, given by

\partialf(x)=\{u\inRN\mid\forally\inRN,(y-x)Tu+f(x)\leqf(y)\}

In particular, If

f

is differentiable then the above equation reduces to

p=\operatorname{prox}f(x)\Leftrightarrowx-p=\nablaf(p)

.

See also

External links

Notes and References

  1. An (extended) real-valued function f on a Hilbert space is said to be proper if it is not identically equal to

    +infty

    , and

    -infty

    is not in its image.
  2. Proximal Algorithms . Neal Parikh and Stephen Boyd . Foundations and Trends in Optimization . 1 . 3 . 2013 . 123–231 . 2019-01-29.
  3. Book: Bauschke, Heinz H. . Convex Analysis and Monotone Operator Theory in Hilbert Spaces . Combettes . Patrick L. . Springer . 2017 . 978-3-319-48310-8 . CMS Books in Mathematics . New York . 10.1007/978-3-319-48311-5.