Primary extension explained
In field theory, a branch of algebra, a primary extension L of K is a field extension such that the algebraic closure of K in L is purely inseparable over K.[1]
Properties
- An extension L/K is primary if and only if it is linearly disjoint from the separable closure of K over K.[1]
- A subextension of a primary extension is primary.[1]
- A primary extension of a primary extension is primary (transitivity).[1]
- Any extension of a separably closed field is primary.[1]
- An extension is regular if and only if it is separable and primary.[1]
- A primary extension of a perfect field is regular.
References
- Book: Fried . Michael D. . Jarden . Moshe . Field arithmetic . 3rd revised . Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge . 11 . . 2008 . 978-3-540-77269-9 . 1145.12001 . 38–44 .
Notes and References
- Fried & Jarden (2008) p.44