In algebraic number theory the n-th power residue symbol (for an integer n > 2) is a generalization of the (quadratic) Legendre symbol to n-th powers. These symbols are used in the statement and proof of cubic, quartic, Eisenstein, and related higher[1] reciprocity laws.[2]
l{O}k
\zetan.
Let
ak{p}\subsetl{O}k
ak{p}
n\not\inak{p}
The norm of
ak{p}
ak{p}
Nak{p}:=|l{O}k/ak{p}|.
An analogue of Fermat's theorem holds in
l{O}k.
\alpha\inl{O}k-ak{p},
\alphaN-1}\equiv1\bmod{ak{p}}.
And finally, suppose
Nak{p}\equiv1\bmod{n}.
| ||||
\alpha |
{n}}\equiv
s\bmod{ak{p}} | |
\zeta | |
n |
is well-defined and congruent to a unique
n
s. | |
\zeta | |
n |
This root of unity is called the n-th power residue symbol for
l{O}k,
\left( | \alpha |
ak{p |
}\right)n=
s | |
\zeta | |
n |
\equiv
| ||||
\alpha |
{n}}\bmod{ak{p}}.
The n-th power symbol has properties completely analogous to those of the classical (quadratic) Jacobi symbol (
\zeta
n
\left( | \alpha |
ak{p |
}\right)n=\begin{cases} 0&\alpha\inak{p}\\ 1&\alpha\not\inak{p}and\existsη\inl{O}k:\alpha\equivηn\bmod{ak{p}}\\ \zeta&\alpha\not\inak{p}andthereisnosuchη \end{cases}
In all cases (zero and nonzero)
\left( | \alpha |
ak{p |
\left( | \alpha |
ak{p |
\alpha\equiv\beta\bmod{ak{p}} ⇒ \left(
\alpha | |
ak{p |
}\right)n=\left(
\beta | |
ak{p |
}\right)n
All power residue symbols mod n are Dirichlet characters mod n, and the m-th power residue symbol only contains the m-th roots of unity, the m-th power residue symbol mod n exists if and only if m divides
λ(n)
( ⋅ , ⋅ )ak{p
ak{p}
\left( | \alpha |
ak{p |
}\right)n=(\pi,\alpha)ak{p
in the case
ak{p}
\pi
Kak{p
The
n
Any ideal
ak{a}\subsetl{O}k
ak{a}=ak{p}1 … ak{p}g.
The
n
\left( | \alpha |
ak{a |
}\right)n=\left(
\alpha | |
ak{p |
1}\right)n … \left(
\alpha | |
ak{p |
g}\right)n.
For
0 ≠ \beta\inl{O}k
\left( | \alpha |
\beta |
\right)n:=\left(
\alpha | |
(\beta) |
\right)n,
where
(\beta)
\beta.
Analogous to the quadratic Jacobi symbol, this symbol is multiplicative in the top and bottom parameters.
\alpha\equiv\beta\bmod{ak{a}}
\left(\tfrac{\alpha}{ak{a}}\right)n=\left(\tfrac{\beta}{ak{a}}\right)n.
\left(\tfrac{\alpha}{ak{a}}\right)n\left(\tfrac{\beta}{ak{a}}\right)n=\left(\tfrac{\alpha\beta}{ak{a}}\right)n.
\left(\tfrac{\alpha}{ak{a}}\right)n\left(\tfrac{\alpha}{ak{b}}\right)n=\left(\tfrac{\alpha}{ak{ab}}\right)n.
Since the symbol is always an
n
n
\alpha\equivηn\bmod{ak{a}}
\left(\tfrac{\alpha}{ak{a}}\right)n=1.
\left(\tfrac{\alpha}{ak{a}}\right)n ≠ 1
\alpha
n
ak{a}.
\left(\tfrac{\alpha}{ak{a}}\right)n=1
\alpha
n
ak{a}.
The power reciprocity law, the analogue of the law of quadratic reciprocity, may be formulated in terms of the Hilbert symbols as[4]
\left({ | \alpha |
\beta |
whenever
\alpha
\beta