Positive polynomial explained

In mathematics, a positive polynomial (respectively non-negative polynomial) on a particular set is a polynomial whose values are positive (respectively non-negative) on that set. Precisely, Let

p

be a polynomial in

n

variables with real coefficients and let

S

be a subset of the

n

-dimensional Euclidean space

Rn

. We say that:

p

is positive on

S

if

p(x)>0

for every

x

in

S

.

p

is non-negative on

S

if

p(x)\ge0

for every

x

in

S

.

Positivstellensatz (and nichtnegativstellensatz)

For certain sets

S

, there exist algebraic descriptions of all polynomials that are positive (resp. non-negative) on

S

. Such a description is a positivstellensatz (resp. nichtnegativstellensatz). The importance of Positivstellensatz theorems in computation arises from its ability to transform problems of polynomial optimization into semidefinite programming problems, which can be efficiently solved using convex optimization techniques.[1]

Examples of positivstellensatz (and nichtnegativstellensatz)

R

if and only if it is a sum of two squares of real polynomials in one variable.[2] This equivalence does not generalize for polynomial with more than one variable: for instance, the Motzkin polynomial

X4Y2+X2Y4-3X2Y2+1

is non-negative on

R2

but is not a sum of squares of elements from

R[X,Y]

.[3]

n

variables is non-negative on

Rn

if and only if it is a sum of squares of real rational functions in

n

variables (see Hilbert's seventeenth problem and Artin's solution[4]).

p\inR[X1,...,Xn]

is homogeneous of even degree. If it is positive on

Rn\setminus\{0\}

, then there exists an integer

m

such that
2)
(X
n

mp

is a sum of squares of elements from

R[X1,...,Xn]

.[5]

{}\le1

we have the following variant of Farkas lemma: If

f,g1,...,gk

have degree

{}\le1

and

f(x)\ge0

for every

x\inRn

satisfying

g1(x)\ge0,...,gk(x)\ge0

, then there exist non-negative real numbers

c0,c1,...,ck

such that

f=c0+c1g1+ … +ckgk

.

p\inR[X1,...,Xn]

is homogeneous and

p

is positive on the set

\{x\inRn\midx1\ge0,...,xn\ge0,x1+ … +xn\ne0\}

, then there exists an integer

m

such that

(x1+ … +c

mp
n)
has non-negative coefficients.

K

is a compact polytope in Euclidean

d

-space, defined by linear inequalities

gi\ge0

, and if

f

is a polynomial in

d

variables that is positive on

K

, then

f

can be expressed as a linear combination with non-negative coefficients of products of members of

\{gi\}

.

Generalizations of positivstellensatz

Positivstellensatz also exist for signomials,[16] trigonometric polynomials,[17] polynomial matrices,[18] polynomials in free variables,[19] quantum polynomials,[20] and definable functions on o-minimal structures.[21]

Further reading

See also

Notes and References

  1. Book: Semidefinite optimization and convex algebraic geometry . 2013 . Grigoriy Blekherman, Pablo A. Parrilo, Rekha R. Thomas . 978-1-61197-228-3 . Philadelphia . 809420808.
  2. Benoist. Olivier. 2017. Writing Positive Polynomials as Sums of (Few) Squares. EMS Newsletter. en. 2017-9. 105. 8–13. 10.4171/NEWS/105/4. 1027-488X. free.
  3. T. S. Motzkin, The arithmetic-geometric inequality. 1967 Inequalities (Proc. Sympos. Wright-Patterson Air Force Base, Ohio, 1965) pp. 205–224.
  4. [Emil Artin|E. Artin]
  5. B. Reznick, Uniform denominators in Hilbert's seventeenth problem. Math. Z. 220 (1995), no. 1, 75–97.
  6. G. Pólya, Über positive Darstellung von Polynomen Vierteljschr, Naturforsch. Ges. Zürich 73 (1928) 141–145, in: R. P. Boas (Ed.), Collected Papers Vol. 2, MIT Press, Cambridge, MA, 1974, pp. 309–313.
  7. D. Handelman, Representing polynomials by positive linear functions on compact convex polyhedra. Pacific J. Math. 132 (1988), no. 1, 35–62.
  8. K. Schmüdgen. "The -moment problem for compact semi-algebraic sets". Math. Ann. 289 (1991), no. 2, 203–206.
  9. T. Wörmann. "Strikt Positive Polynome in der Semialgebraischen Geometrie", Univ. Dortmund 1998.
  10. M. Putinar, "Positive polynomials on compact semi-algebraic sets". Indiana Univ. Math. J. 42 (1993), no. 3, 969–984.
  11. T. Jacobi, "A representation theorem for certain partially ordered commutative rings". Math. Z. 237 (2001), no. 2, 259–273.
  12. Vasilescu, F.-H. "Spectral measures and moment problems". Spectral analysis and its applications, 173–215, Theta Ser. Adv. Math., 2, Theta, Bucharest, 2003. See Theorem 1.3.1.
  13. C. Scheiderer, "Sums of squares of regular functions on real algebraic varieties". Trans. Amer. Math. Soc. 352 (2000), no. 3, 1039–1069.
  14. C. Scheiderer, "Sums of squares on real algebraic curves". Math. Z. 245 (2003), no. 4, 725–760.
  15. C. Scheiderer, "Sums of squares on real algebraic surfaces". Manuscripta Math. 119 (2006), no. 4, 395–410.
  16. Dressler . Mareike . Murray . Riley . 2022-12-31 . Algebraic Perspectives on Signomial Optimization . SIAM Journal on Applied Algebra and Geometry . en . 6 . 4 . 650–684 . 10.1137/21M1462568 . 2107.00345 . 235694320 . 2470-6566.
  17. Dumitrescu . Bogdan . 2007 . Positivstellensatz for Trigonometric Polynomials and Multidimensional Stability Tests . IEEE Transactions on Circuits and Systems II: Express Briefs . 54 . 4 . 353–356 . 10.1109/TCSII.2006.890409 . 38131072 . 1558-3791.
  18. Cimprič . J. . 2011 . Strict positivstellensätze for matrix polynomials with scalar constraints . Linear Algebra and Its Applications . en . 434 . 8 . 1879–1883 . 10.1016/j.laa.2010.11.046. 119169153 . free . 1011.4930 .
  19. Helton . J. William . Klep . Igor . McCullough . Scott . 2012 . The convex Positivstellensatz in a free algebra . . en . 231 . 1 . 516–534 . 10.1016/j.aim.2012.04.028 . free. 1102.4859 .
  20. Klep . Igor . 2004-12-31 . The Noncommutative Graded Positivstellensatz . Communications in Algebra . en . 32 . 5 . 2029–2040 . 10.1081/AGB-120029921 . 120795025 . 0092-7872.
  21. Acquistapace . F. . Andradas . C. . Broglia . F. . 2002-07-01 . The Positivstellensatz for definable functions on o-minimal structures . Illinois Journal of Mathematics . 46 . 3 . 10.1215/ijm/1258130979 . 122451112 . 0019-2082. free .