Populus Explained

Populus is a genus of 25–30 species of deciduous flowering plants in the family Salicaceae, native to most of the Northern Hemisphere. English names variously applied to different species include poplar, aspen, and cottonwood.

The western balsam poplar (P. trichocarpa) was the first tree to have its full DNA code determined by DNA sequencing, in 2006.[1]

Description

The genus has a large genetic diversity, and can grow from 15m-50mm (49feet-160feetm) tall, with trunks up to 2.5abbr=onNaNabbr=on in diameter.

The bark on young trees is smooth and white to greenish or dark gray, and often has conspicuous lenticels; on old trees, it remains smooth in some species, but becomes rough and deeply fissured in others. The shoots are stout, with (unlike in the related willows) the terminal bud present. The leaves are spirally arranged, and vary in shape from triangular to circular or (rarely) lobed, and with a long petiole; in species in the sections Populus and Aigeiros, the petioles are laterally flattened, so that breezes easily cause the leaves to wobble back and forth, giving the whole tree a "twinkling" appearance in a breeze. Leaf size is very variable even on a single tree, typically with small leaves on side shoots, and very large leaves on strong-growing lead shoots. The leaves often turn bright gold to yellow before they fall during autumn.[2] [3]

The flowers are mostly dioecious (rarely monoecious) and appear in early spring before the leaves. They are borne in long, drooping, sessile or pedunculate catkins produced from buds formed in the axils of the leaves from the previous year. The flowers are each seated in a cup-shaped disk which is borne on the base of a scale which is itself attached to the rachis of the catkin. The scales are obovate, lobed, and fringed, membranous, hairy or smooth, and usually caducous. The male flowers are without calyx or corolla, and comprise a group of four to 60 stamens inserted on a disk; filaments are short and pale yellow; anthers are oblong, purple or red, introrse, and two-celled; the cells open longitudinally. The female flower also has no calyx or corolla, and comprises a single-celled ovary seated in a cup-shaped disk. The style is short, with two to four stigmata, variously lobed, and numerous ovules. Pollination is by wind, with the female catkins lengthening considerably between pollination and maturity. The fruit is a two- to four-valved dehiscent capsule, green to reddish-brown, mature in midsummer, containing numerous minute, light-brown seeds surrounded by tufts of long, soft, white hairs aiding wind dispersal.[2] [4]

Classification

The genus Populus has traditionally been divided into six sections on the basis of leaf and flower characters;[5] this classification is followed below. Recent genetic studies have largely supported this, confirming some previously suspected reticulate evolution due to past hybridisation and introgression events between the groups. Some species (noted below) had differing relationships indicated by their nuclear DNA (paternally inherited) and chloroplast DNA sequences (maternally inherited), a clear indication of likely hybrid origin.[6] Hybridisation continues to be common in the genus, with several hybrids between species in different sections known.[7] There are currently 57 accepted species in the genus.[8]

Phylogeny

Some of the most easily identifiable fossils of this genus belongs to Poplus wilmattae, which come from the Late Paleocene of North America about 58 million years ago.[9] However, fossils from the Cretaceous of this genus have been found in Tibet and Heilongjiang, China.[10]

Selected species

Ecology

Poplars of the cottonwood section are often wetlands or riparian trees. The aspens are among the most important boreal broadleaf trees.

Poplars and aspens are important food plants for the larvae of a large number of Lepidoptera species. Pleurotus populinus, the aspen oyster mushroom, is found exclusively on dead wood of Populus trees in North America.

Several species of Populus in the United Kingdom and other parts of Europe have experienced heavy dieback; this is thought in part to be due to Sesia apiformis which bores into the trunk of the tree during its larval stage.[13]

Cultivation

Many poplars are grown as ornamental trees, with numerous cultivars used. They have the advantage of growing to a very large size at a rapid pace. Almost all poplars take root readily from cuttings or where broken branches lie on the ground (they also often have remarkable suckering abilities, and can form huge colonies from a single original tree, such as the famous Pando forest made of thousands of Populus tremuloides clones).

Trees with fastigiate (erect, columnar) branching are particularly popular, and are widely grown across Europe and southwest Asia. However, like willows, poplars have very vigorous and invasive root systems stretching up to from the trees; planting close to houses or ceramic water pipes may result in damaged foundations and cracked walls and pipes due to their search for moisture.

A simple, reproducible, high-frequency micropropagation protocol in eastern cottonwood Populus deltoides has been reported by Yadav et al. 2009.[14]

India

In India, the poplar is grown commercially by farmers, mainly in the Punjab region. Common poplar varieties are:

The trees are grown from kalam or cuttings, harvested annually in January and February, and commercially available up to 15November.

Poplars are most commonly used to make plywood: Yamuna Nagar in Haryana state has a large plywood industry reliant upon poplar. It is graded according to sizes known as "over" (over), "under" (18–), and "sokta" (less than).

Uses

Although the wood from Populus is known as poplar wood, a common high-quality hardwood "poplar" with a greenish colour is actually from an unrelated genus Liriodendron. Populus wood is a lighter, more porous material.

Its flexibility and close grain make it suitable for a number of applications, similar to those of willow. The Greeks and Etruscans made shields of poplar, and Pliny the Elder also recommended poplar for this purpose.[15] Poplar continued to be used for shield construction through the Middle Ages and was renowned for a durability similar to that of oak, but with a substantial reduction in weight.

Food

In addition to the foliage and other parts of Populus species being consumed by animals, the starchy sap layer (underneath the outer bark) is edible to humans, both raw and cooked.[16]

Manufacturing

In Pakistan, poplar is grown on a commercial level by farmers in Punjab, Sindh, and Khyber Pakhtunkhwa Provinces. However, all varieties are seriously susceptible to termite attack, causing significant losses to poplar every year. Logs of poplar are therefore also used as bait in termite traps for biocontrol of termites in crops.

Energy

Interest exists in using poplar as an energy crop for biomass, in energy forestry systems, particularly in light of its high energy-in to energy-out ratio, large carbon mitigation potential, and fast growth.

In the United Kingdom, poplar (as with fellow energy crop willow) is typically grown in a short rotation coppice system for two to five years (with single or multiple stems), then harvested and burned - the yield of some varieties can be as high as 12 oven-dry tonnes per hectare every year.[19] In warmer regions like Italy this crop can produce up to 13.8, 16.4 oven-dry tonnes of biomass per hectare every year for biannual and triennial cutting cycles also showing a positive energy balance and a high energy efficiency.[20]

Fuel

Biofuel is another option for using poplar as bioenergy supply. In the United States, scientists studied converting short rotation coppice poplar into sugars for biofuel (e.g. ethanol) production.[21] Considering the relative cheap price, the process of making biofuel from SRC can be economically feasible, although the conversion yield from short rotation coppice (as juvenile crops) were lower than regular mature wood. Besides biochemical conversion, thermochemical conversion (e.g. fast pyrolysis) was also studied for making biofuel from short rotation coppice poplar and was found to have higher energy recovery than that from bioconversion.[22]

Art

Poplar was the most common wood used in Italy for panel paintings; the Mona Lisa and most famous early Italian Renaissance paintings are on poplar. The wood is generally white, often with a slightly yellowish colour.

Some stringed instruments are made with one-piece poplar backs; violas made in this fashion are said to have a particularly resonant tone. Similarly, though typically it is considered to have a less attractive grain than the traditional sitka spruce, poplar is beginning to be targeted by some harp luthiers as a sustainable and even superior alternative for their sound boards:[23] in these cases another hardwood veneer is sometimes applied to the resonant poplar base both for cosmetic reasons, and supposedly to fine-tune the acoustic properties.

Land management

Lombardy poplars are frequently used as a windbreak around agricultural fields to protect against wind erosion.

Agriculture

Logs from the poplar provide a growing medium for shiitake mushrooms.[24]

Phytoremediation

Poplar represents a suitable candidate for phytoremediation since it has the ability to remove and store harmful pollutants in its trunk while also removing air pollution.[25] This plant has been successfully used to target many types of pollutants including trace element (TEs) in soil[26] and sewage sludge,[27] [28] Polychlorinated Biphenyl (PCBs),[29] Trichloroethylene (TCE),[30] Polycyclic Aromatic Hydrocarbon (PAHs).[31]

Culture

Two notable poems in English lament the cutting down of poplars, William Cowper's "The Poplar Field" and Gerard Manley Hopkins' "Binsey Poplars felled 1879".

In Billie Holiday's "Strange Fruit", she sings "Black bodies swinging in the southern breeze/Strange fruit hanging from the poplar trees…".

The Odd Poplars Alley, in Iași, Romania, is one of the spots where Mihai Eminescu sought inspiration in his works (the poem "Down Where the Lonely Poplars Grow"). In 1973, the 15 white poplars still left (with age ranges between 233 and 371 years) were declared natural monuments.[32]

In Ukraine, one of neighborhoods of Kyiv is named after Populus nigra as Osokorky, a local name.

Notes and References

  1. Joint Genome Institute, Populus trichocarpa
  2. Meikle, R. D. (1984). Willows and Poplars of Great Britain and Ireland. BSBI Handbook No. 4. .
  3. Rushforth, K. (1999). Trees of Britain and rope. Collins .
  4. Book: Keeler, H. L. . Our Native Trees and How to Identify Them . Charles Scribner's Sons . 1900 . New York . 410–412.
  5. Book: Eckenwalder, J.E. . 1996 . Biology of Populus and its implications for management and conservation . Systematics and evolution of Populus . NRC Research Press, National Research Council of Canada . Ottawa . R.F. Stettler . H.D. Bradshaw . P.E. Heilman . T.M. Hinckley . https://books.google.com/books?id=HvuTJC32C3YC&pg=PR1 . 9780660165066.
  6. Hamzeh, M., & Dayanandan, S. (2004). Phylogeny of Populus (Salicaceae) based on nucleotide sequences of chloroplast TRNT-TRNF region and nuclear rDNA. Amer. J. Bot. 91: 1398-1408. Available online
  7. Book: Eckenwalder, J.E. . 2001 . Poplar culture in North America . Key to species and main crosses . NRC Research Press . Ottawa . D.I. Dickmann . J.G. Isebrands . J.E. Eckenwalder . J. Richardson . 325–330 . 978-0-660-18145-5.
  8. "Populus L.". Plants of the World Online, Kew Science. Accessed 8 September 2021. https://powo.science.kew.org/taxon/urn:lsid:ipni.org:names:328417-2
  9. Book: Dickmann . Donald . Poplars and Willows in the World . https://web.archive.org/web/20160808130345/http://www.fao.org/3/a-i2670e.pdf . 2016-08-08 . live . Kuzovkina . Yulia . 2008 . The Food and Agriculture Organization of the United Nations . 978-92-5-107185-4 . 27 . 24 March 2020.
  10. Liu . Xia . Wang . Zhaoshan . Wang . Wei . Huang . Qinqin . Zeng . Yanfei . Jin . Yu . Li . Honglei . Du . Shuhui . Zhang . Jianguo . 2022 . Origin and evolutionary history of Populus (Salicaceae): Further insights based on time divergence and biogeographic analysis . Frontiers in Plant Science . 13 . 10.3389/fpls.2022.1031087 . 1664-462X . 9815717 . 36618663 . free .
  11. Populus primaveralepensis sp. nov. (Salicaceae, Malpighiales), a new species of white poplar from the Bosque La Primavera Biosphere Reserve in Western Mexico". European Journal of Taxonomy. 2019. 10.5852/ejt.2019.498.
  12. Web site: A Forest in the Desert: Hybrid Poplar Plantation Feeds New Mill . 3 October 2019 . 29 November 2020 . https://web.archive.org/web/20201129201055/http://www.collinsco.com/Library/Archives/ForestrySourceJuly2009.pdf . live .
  13. Martin-Garcia . J . Patterns and monitoring of Sesia apiformis infestations in poplar plantations at different spatial scales . Journal of Applied Entomology.
  14. 10.1007/s11816-009-0088-5 . 3 . 3 . High frequency direct plant regeneration from leaf, internode, and root segments of Eastern Cottonwood (Populus deltoides) . 2009 . Plant Biotechnology Reports . 175–182 . Yadav . Rakesh . 42796629.
  15. Book: H. A. Shapiro . The Cambridge Companion to Archaic Greece . 2007 . Cambridge University Press . 978-1-139-82699-0 . 69 . 22 November 2015 . 17 July 2023 . https://web.archive.org/web/20230717125102/https://books.google.com/books?id=6LUcuGdJF30C&pg=PA69 . live .
  16. Book: Angier, Bradford . Field Guide to Edible Wild Plants . Stackpole Books . 1974 . 0-8117-0616-8 . Harrisburg, PA . 172 . 799792 . Bradford Angier.
  17. http://www.peupliersdefrance.org/indexGB.htm/ Poplar cultivation in Europe
  18. Aiken . Laura . Baking Bread Abroad . . 18 April 2012 . 11 June 2016 . 8 August 2016 . https://web.archive.org/web/20160808104752/http://www.bakersjournal.com/news/breaking-bread-abroad-3747 . live .
  19. Yield and spatial supply of bioenergy poplar and willow short-rotation coppice in the UK . New Phytologist . 178 . 2 fvhc . 358–370 . 2008 . 10.1111/j.1469-8137.2008.02396.x . Aylott, Matthew J. . 18331429 . Casella . E . Tubby . I . Street . NR . Smith . P . Taylor . G . 35494995. free .
  20. Nassi . Di Nasso . N. . Guidi . W. . Ragaglini . G. . Tozzini . C. . Bonari . E. . 2010 . Biomass production and energy balance of a twelve-year-old short-rotation coppice poplar stand under different cutting cycles . 10.1111/j.1757-1707.2010.01043.x . Global Change Biology Bioenergy . 2 . 2 . 89–97 . 86414864.
  21. Can we use short rotation coppice poplar for sugar based biorefinery feedstock? Bioconversion of two-year-old poplar grown as short rotation coppice . Biotechnology for Biofuels . 10 . 1 . 144 . 2017 . 10.1186/s13068-017-0829-6 . 28592993 . 5460468 . Dou, C . Marcondes, W. . Djaja, J. . Renata, R. . Gustafson, R. . free .
  22. Fast pyrolysis of short rotation coppice poplar: an investigation in thermochemical conversion of a realistic feedstock for the biorefinery . Biotechnology for Biofuels . 10 . 1 . 144 . 2017 . 10.1021/acssuschemeng.7b01000 . Dou, C . Chandler, D. . Resende, F. . Renata, R..
  23. Web site: Harps by Wm. Rees - WM REES HARP MYTH 8 . 2011-07-01 . dead . https://web.archive.org/web/20120326111406/http://traditionalharps.com/Old_Rees_Harps_Site/HarpsGeneralTonewoods.html . 26 March 2012. Rees Harps Website, "Harp Myth #8".
  24. http://www.mtg.unimelb.edu.au/Shiitake.htm Shiitake growth studies performed by RMIT
  25. Doty . Sharon L. . Freeman . John L. . Cohu . Christopher M. . Burken . Joel G. . Firrincieli . Andrea . Simon . Andrew . Khan . Zareen . Isebrands . J. G. . Lukas . Joseph . Blaylock . Michael J. . 2017-09-05 . Enhanced Degradation of TCE on a Superfund Site Using Endophyte-Assisted Poplar Tree Phytoremediation . Environmental Science & Technology . en . 51 . 17 . 10050–10058 . 10.1021/acs.est.7b01504 . 28737929 . 2017EnST...5110050D . 0013-936X.
  26. Guidi Nissim . W. . Palm . E. . Mancuso . S. . Azzarello . E. . 2018 . Trace element phytoextraction from contaminated soil: a case study under Mediterranean climate . Environmental Science and Pollution Research . 25 . 9 . 9114–9131 . 10.1007/s11356-018-1197-x . 29340860 . 2018ESPR...25.9114G . 3892759.
  27. Werther Guidi Nissim, Alessandra Cincinelli, Tania Martellini, Laura Alvisi, Emily Palm, Stefano Mancuso, Elisa Azzarello, Phytoremediation of sewage sludge contaminated by trace elements and organic compounds, Environmental Research, Volume 164, July 2018, Pages 356-366, ISSN 0013-9351, https://doi.org/10.1016/j.envres.2018.03.009., landfill leachate
  28. Justin . MZ . Pajk . N . Zupanc . V . Zupanƒçiƒç . M . 2010 . Phytoremediation of landfill leachate and compost wastewater by irrigation of Populus and Salix: Biomass and growth response . Waste Management . 30 . 6 . 1032–42 . 10.1016/j.wasman.2010.02.013 . 20211551. 2010WaMan..30.1032J .
  29. Meggo RE, Schnoor JL. Cleaning Polychlorinated Biphenyl (PCB) Contaminated Garden Soil by Phytoremediation. Environmental sciences. 2013;1(1):33-52
  30. Gordon . M . Choe . N . Duffy . J . etal . 1998 . Phytoremediation of trichloroethylene with hybrid poplars . Environmental Health Perspectives . 106 . Suppl 4 . 1001–1004 . 10.2307/3434144 . 1533336 . 3434144 . 9703485.
  31. Spriggs . T. . Banks . M. K. . Schwab . P. . 2005 . Phytoremediation of Polycyclic Aromatic Hydrocarbons in Manufactured Gas Plant–Impacted Soil . J. Environ. Qual. . 34 . 5 . 1755–1762 . 10.2134/jeq2004.0399 . 16151227. 2005JEnvQ..34.1755S .
  32. Web site: 2017-10-17 . Iași - the county of centuries-old trees . 2018-10-15 . Agerpres.ro . 6 August 2019 . https://web.archive.org/web/20190806074723/https://www.agerpres.ro/engleza-destinatie-romania/2014/09/04/destination-romania-iasi-the-county-of-centuries-old-trees-13-57-22 . dead .