Kidney failure explained

Kidney failure
Synonyms:Renal failure, end-stage renal disease (ESRD), stage 5 chronic kidney disease
Field:Nephrology
Symptoms:Leg swelling, feeling tired, loss of appetite, confusion
Complications:Acute: Uremia, high blood potassium, volume overload
Chronic: Heart disease, high blood pressure, anemia
Types:Acute kidney failure, chronic kidney failure
Causes:Acute:
Chronic:
Diagnosis:Acute:
Chronic:
Treatment:Acute: Depends on the cause
Chronic: Hemodialysis, peritoneal dialysis, kidney transplant
Frequency:Acute: 3 per 1,000 per year
Chronic: 1 per 1,000 (US)

Kidney failure, also known as end-stage renal disease (ESRD), is a medical condition in which the kidneys can no longer adequately filter waste products from the blood, functioning at less than 15% of normal levels.[1] Kidney failure is classified as either acute kidney failure, which develops rapidly and may resolve; and chronic kidney failure, which develops slowly and can often be irreversible.[2] Symptoms may include leg swelling, feeling tired, vomiting, loss of appetite, and confusion.[1] Complications of acute and chronic failure include uremia, hyperkalemia, and volume overload. Complications of chronic failure also include heart disease, high blood pressure, and anaemia.[3] [4]

Causes of acute kidney failure include low blood pressure, blockage of the urinary tract, certain medications, muscle breakdown, and hemolytic uremic syndrome.[2] Causes of chronic kidney failure include diabetes, high blood pressure, nephrotic syndrome, and polycystic kidney disease.[2] Diagnosis of acute failure is often based on a combination of factors such as decreased urine production or increased serum creatinine.[5] Diagnosis of chronic failure is based on a glomerular filtration rate (GFR) of less than 15 or the need for renal replacement therapy.[6] It is also equivalent to stage 5 chronic kidney disease.[6]

Treatment of acute failure depends on the underlying cause.[7] Treatment of chronic failure may include hemodialysis, peritoneal dialysis, or a kidney transplant.[1] Hemodialysis uses a machine to filter the blood outside the body.[1] In peritoneal dialysis specific fluid is placed into the abdominal cavity and then drained, with this process being repeated multiple times per day.[1] Kidney transplantation involves surgically placing a kidney from someone else and then taking immunosuppressant medication to prevent rejection.[1] Other recommended measures from chronic disease include staying active and specific dietary changes.[1] Depression is also common among patients with kidney failure, and is associated with poor outcomes including higher risk of kidney function decline, hospitalization, and death. A recent PCORI-funded study of patients with kidney failure receiving outpatient hemodialysis found similar effectiveness between nonpharmacological and pharmacological treatments for depression.[8]

In the United States, acute failure affects about 3 per 1,000 people a year.[9] Chronic failure affects about 1 in 1,000 people with 3 per 10,000 people newly developing the condition each year.[6] [10] In Canada, the lifetime risk of kidney failure or end-stage renal disease (ESRD) was estimated to be 2.66% for men and 1.76% for women.[11] Acute failure is often reversible while chronic failure often is not.[2] With appropriate treatment many with chronic disease can continue working.[1]

Classification

See also: Hepatorenal syndrome.

Kidney failure can be divided into two categories: acute kidney failure or chronic kidney failure. The type of renal failure is differentiated by the trend in the serum creatinine; other factors that may help differentiate acute kidney failure from chronic kidney failure include anemia and the kidney size on sonography as chronic kidney disease generally leads to anemia and small kidney size.

Acute kidney failure

See main article: Acute kidney injury.

Acute kidney injury (AKI), previously called acute renal failure (ARF),[12] [13] is a rapidly progressive loss of renal function,[14] generally characterized by oliguria (decreased urine production, quantified as less than 400 mL per day in adults,[15] less than 0.5 mL/kg/h in children or less than 1 mL/kg/h in infants); and fluid and electrolyte imbalance. AKI can result from a variety of causes, generally classified as prerenal, intrinsic, and postrenal. Many people diagnosed with paraquat intoxication experience AKI, sometimes requiring hemodialysis. The underlying cause must be identified and treated to arrest the progress, and dialysis may be necessary to bridge the time gap required for treating these fundamental causes.

Chronic kidney failure

Chronic kidney disease (CKD) can also develop slowly and, initially, show few symptoms.[16] CKD can be the long term consequence of irreversible acute disease or part of a disease progression. CKD is divided into 5 different stages (1–5) according to the estimated glomerular filtration rate (eGFR). In CKD1 eGFR is normal and in CKD5 eGFR has decreased to less than 15 ml/min.[17]

Acute-on-chronic kidney failure

Acute kidney injuries can be present on top of chronic kidney disease, a condition called acute-on-chronic kidney failure (AoCRF). The acute part of AoCRF may be reversible, and the goal of treatment, as with AKI, is to return the person to baseline kidney function, typically measured by serum creatinine. Like AKI, AoCRF can be difficult to distinguish from chronic kidney disease if the person has not been monitored by a physician and no baseline (i.e., past) blood work is available for comparison.

Signs and symptoms

Symptoms can vary from person to person. Someone in early stage kidney disease may not feel sick or notice symptoms as they occur. When the kidneys fail to filter properly, waste accumulates in the blood and the body, a condition called azotemia. Very low levels of azotemia may produce few, if any, symptoms. If the disease progresses, symptoms become noticeable (if the failure is of sufficient degree to cause symptoms). Kidney failure accompanied by noticeable symptoms is termed uraemia.[18]

Symptoms of kidney failure include the following:[18] [19] [20] [21]

Causes

Acute kidney injury

See main article: Acute kidney injury. Acute kidney injury (previously known as acute renal failure) – or AKI – usually occurs when the blood supply to the kidneys is suddenly interrupted or when the kidneys become overloaded with toxins. Causes of acute kidney injury include accidents, injuries, or complications from surgeries in which the kidneys are deprived of normal blood flow for extended periods of time. Heart-bypass surgery is an example of one such procedure.

Drug overdoses, accidental or from chemical overloads of drugs such as antibiotics or chemotherapy, along with bee stings[25] may also cause the onset of acute kidney injury. Unlike chronic kidney disease, however, the kidneys can often recover from acute kidney injury, allowing the person with AKI to resume a normal life. People with acute kidney injury require supportive treatment until their kidneys recover function, and they often remain at increased risk of developing future kidney failure.[26]

Among the accidental causes of renal failure is the crush syndrome, when large amounts of toxins are suddenly released in the blood circulation after a long compressed limb is suddenly relieved from the pressure obstructing the blood flow through its tissues, causing ischemia. The resulting overload can lead to the clogging and the destruction of the kidneys. It is a reperfusion injury that appears after the release of the crushing pressure. The mechanism is believed to be the release into the bloodstream of muscle breakdown products – notably myoglobin, potassium, and phosphorus – that are the products of rhabdomyolysis (the breakdown of skeletal muscle damaged by ischemic conditions). The specific action on the kidneys is not fully understood, but may be due in part to nephrotoxic metabolites of myoglobin.

Chronic kidney failure

Chronic kidney failure has numerous causes. The most common causes of chronic failure are diabetes mellitus and long-term, uncontrolled hypertension.[27] Polycystic kidney disease is another well-known cause of chronic failure. The majority of people affected with polycystic kidney disease have a family history of the disease. Systemic lupus erythematosus (SLE) is also a known cause of chronic kidney failure. Other genetic illnesses cause kidney failure, as well.

Overuse of common drugs such as ibuprofen, and acetaminophen (paracetamol) can also cause chronic kidney failure.[28]

Some infectious disease agents, such as hantavirus, can attack the kidneys, causing kidney failure.[29]

Genetic predisposition

The APOL1 gene has been proposed as a major genetic risk locus for a spectrum of nondiabetic renal failure in individuals of African origin, these include HIV-associated nephropathy (HIVAN), primary nonmonogenic forms of focal segmental glomerulosclerosis, and hypertension affiliated chronic kidney disease not attributed to other etiologies.[30] Two western African variants in APOL1 have been shown to be associated with end stage kidney disease in African Americans and Hispanic Americans.[31] [32]

Diagnostic approach

Measurement for CKD

Stages of kidney failure

Chronic kidney failure is measured in five stages, which are calculated using the person's GFR, or glomerular filtration rate. Stage 1 CKD is mildly diminished renal function, with few overt symptoms. Stages 2 and 3 need increasing levels of supportive care from their medical providers to slow and treat their renal dysfunction. People with stage 4 and 5 kidney failure usually require preparation towards active treatment in order to survive. Stage 5 CKD is considered a severe illness and requires some form of renal replacement therapy (dialysis) or kidney transplant whenever feasible.

Glomerular filtration rate

A normal GFR varies according to many factors, including sex, age, body size and ethnic background. Renal professionals consider the glomerular filtration rate (GFR) to be the best overall index of kidney function.[33] The National Kidney Foundation offers an easy to use on-line GFR calculator[34] for anyone who is interested in knowing their glomerular filtration rate. (A serum creatinine level, a simple blood test, is needed to use the calculator.)

Use of the term uremia

Before the advancement of modern medicine, renal failure was often referred to as uremic poisoning. Uremia was the term for the contamination of the blood with urea. It is the presence of an excessive amount of urea in blood. Starting around 1847, this included reduced urine output, which was thought to be caused by the urine mixing with the blood instead of being voided through the urethra. The term uremia is now used for the illness accompanying kidney failure.[35]

Renal failure index

Two other urinary indices, are the fractional sodium excretion (FENa) index and the renal failure index (RFI).[36] The renal failure index is equal to urine sodium times plasma creatinine divided by urine creatinine. A FENa score greater than 3% or a renal failure index (RFI) greater than 3 are helpful in confirming acute renal failure.[37]

Complications

Those with end stage renal failure who undergo haemodialysis have higher risk of spontaneous intra-abdominal bleeding than the general population (21.2%) and non-occlusive mesenteric ischemia (18.1%). Meanwhile, those undergoing peritoneal dialysis have a higher chance of developing peritonitis and gastrointestinal perforation. However, the rate of acute pancreatitis does not differ from the general population.[38]

Treatment

The treatment of acute kidney injury depends on the cause.[7] The treatment of chronic kidney failure may include renal replacement therapy: hemodialysis, peritoneal dialysis, or kidney transplant.[1]

Diet

In non-diabetics and people with type 1 diabetes, a low protein diet is found to have a preventive effect on progression of chronic kidney disease. However, this effect does not apply to people with type 2 diabetes.[39] A whole food, plant-based diet may help some people with kidney disease.[40] A high protein diet from either animal or plant sources appears to have negative effects on kidney function at least in the short term.[41]

Slowing progression

People who receive earlier referrals to a nephrology specialist, meaning a longer time before they must start dialysis, have a shorter initial hospitalization and reduced risk of death after the start of dialysis.[42] Other methods of reducing disease progression include minimizing exposure to nephrotoxins such as NSAIDs and intravenous contrast.[43]

Notes and References

  1. Web site: Kidney Failure. National Institute of Diabetes and Digestive and Kidney Diseases. 11 November 2017.
  2. Web site: What is renal failure?. Johns Hopkins Medicine. 18 December 2017. en. https://web.archive.org/web/20170618054600/http://www.hopkinsmedicine.org/healthlibrary/conditions/kidney_and_urinary_system_disorders/end_stage_renal_disease_esrd_85,P01474/. 18 June 2017.
  3. Liao MT, Sung CC, Hung KC, Wu CC, Lo L, Lu KC . Insulin resistance in patients with chronic kidney disease . Journal of Biomedicine & Biotechnology . 2012 . 691369 . 2012 . 22919275 . 3420350 . 10.1155/2012/691369 . free .
  4. Web site: Kidney Failure. MedlinePlus. 11 November 2017. en.
  5. Book: Blakeley S . Renal Failure and Replacement Therapies. 2010. Springer Science & Business Media. 9781846289378. 19. en.
  6. Book: Cheung AK . Primer on Kidney Diseases. 2005. Elsevier Health Sciences. 1416023127. 457. en.
  7. Book: Clatworthy M . Nephrology: Clinical Cases Uncovered. 2010. John Wiley & Sons. 9781405189903. 28. en.
  8. Mehrotra R, Cukor D, Unruh M, Rue T, Heagerty P, Cohen SD, Dember LM, Diaz-Linhart Y, Dubovsky A, Greene T, Grote N, Kutner N, Trivedi MH, Quinn DK, Ver Halen N, Weisbord SD, Young BA, Kimmel PL, Hedayati SS . 6 . Comparative Efficacy of Therapies for Treatment of Depression for Patients Undergoing Maintenance Hemodialysis: A Randomized Clinical Trial . Annals of Internal Medicine . 170 . 6 . 369–379 . March 2019 . 30802897 . 10.7326/M18-2229 . 67876948 .
  9. Book: Ferri FF . Ferri's Clinical Advisor 2018 E-Book: 5 Books in 1. 2017. Elsevier Health Sciences. 9780323529570. 37. en.
  10. Book: Ferri FF . Ferri's Clinical Advisor 2018 E-Book: 5 Books in 1. 2017. Elsevier Health Sciences. 9780323529570. 294. en.
  11. Turin TC, Tonelli M, Manns BJ, Ahmed SB, Ravani P, James MT, Hemmelgarn BR . Lifetime risk of ESRD . J Am Soc Nephrol . 23 . 9 . 1569–1578 . September 2012 . 22904351 . 3431421 . 10.1681/ASN.2012020164 .
  12. Moore EM, Bellomo R, Nichol AD . The meaning of acute kidney injury and its relevance to intensive care and anaesthesia . Anaesthesia and Intensive Care . 40 . 6 . 929–48 . November 2012 . 23194202 . 10.1177/0310057X1204000604 . free .
  13. Ricci Z, Ronco C . New insights in acute kidney failure in the critically ill . Swiss Medical Weekly . 142 . w13662 . 2012 . 22923149 . 10.4414/smw.2012.13662 . free .
  14. Encyclopedia: Acute kidney failure . https://web.archive.org/web/20140117220151/https://www.ncbi.nlm.nih.gov/pubmedhealth/PMH0001530/ . 17 January 2014 . A.D.A.M. Medical Encyclopedia . 2012 . U.S. National Library of Medicine . 1 January 2013.
  15. Klahr S, Miller SB . Acute oliguria . The New England Journal of Medicine . 338 . 10 . 671–5 . March 1998 . 9486997 . 10.1056/NEJM199803053381007 .
  16. Encyclopedia: Chronic kidney disease . 2011 . A.D.A.M. Medical Encyclopedia . Medline Plus, National Institutes of Health . 1 January 2013.
  17. Web site: 2021-11-22 . Stages of kidney disease . 2023-03-09 . www.kidneyfund.org . en.
  18. Web site: Grinsted P . Kidney failure (renal failure with uremia, or azotaemia) . 2005-03-02 . 2009-05-26.
  19. Book: Stein A . Understanding Treatment Options For Renal Therapy . Baxter International Inc. . 2007-07-01 . Deerfield, Illinois . 6 . 978-1-85959-070-6 . 2010-07-12 . 2019-01-30 . https://web.archive.org/web/20190130063734/http://www.renalinfo.com/ . dead .
  20. Book: The PD Companion . Baxter International Inc. . 2008-05-01 . Deerfield, Illinois . 14–15 . 08/1046R . 2010-07-12 . https://web.archive.org/web/20100625040151/http://www.renalinfo.com/uk/ . 2010-06-25 . dead .
  21. Web site: Amgen Inc. . Amgen . 10 Symptoms of Kidney Disease . 2009 . 2009-05-26.
  22. Web site: MedicineNet, Inc. . Hyperkalemia . 2008-07-03 . 2009-05-26.
  23. Web site: Hebert LA, Charleston J, Miller E . Proteinuria . 2009 . 2011-03-24 . https://web.archive.org/web/20110505073832/http://kidney.niddk.nih.gov/kudiseases/pubs/proteinuria/ . 2011-05-05 . dead .
  24. Book: Katzung BG . Basic and Clinical Pharmacology . 10th . 2007. McGraw Hill Medical. New York, NY. 978-0-07-145153-6. 733.
  25. Silva GB, Vasconcelos AG, Rocha AM, Vasconcelos VR, Barros J, Fujishima JS, Ferreira NB, Barros EJ, Daher EF . 6 . Acute kidney injury complicating bee stings - a review . Revista do Instituto de Medicina Tropical de Sao Paulo . 59 . e25 . June 2017 . 28591253 . 5459532 . 10.1590/S1678-9946201759025 .
  26. Web site: The Kidneys and How They Work . National Kidney and Urologic Diseases Information Clearinghouse . 2012 . National Institute of Diabetes and Digestive and Kidney Diseases . 1 January 2013 . https://web.archive.org/web/20150502081848/http://kidney.niddk.nih.gov/Kudiseases/pubs/yourkidneys/#7 . 2 May 2015 . dead .
  27. Kes P, Basić-Jukić N, Ljutić D, Brunetta-Gavranić B . [The role of arterial hypertension in development of chronic renal failure] ]. hr . Acta Medica Croatica . 65 . Suppl 3 . 78–84 . October 2011 . 23120821 . dead . The role of arterial hypertension in the development of chronic renal failure . https://web.archive.org/web/20130719135947/http://www.amzh.hr/amc/pdf/amc_2011%20vol%2065%20supplement%203.pdf . 2013-07-19 .
  28. Perneger TV, Whelton PK, Klag MJ . Risk of kidney failure associated with the use of acetaminophen, aspirin, and nonsteroidal antiinflammatory drugs . The New England Journal of Medicine . 331 . 25 . 1675–9 . December 1994 . 7969358 . 10.1056/NEJM199412223312502 . free .
  29. Web site: Renal involvement with hantavirus infection (hemorrhagic fever with renal syndrome) . Appel GB, Mustonen J . 2012 . . 1 January 2013.
  30. Bostrom MA, Freedman BI . The spectrum of MYH9-associated nephropathy . Clinical Journal of the American Society of Nephrology . 5 . 6 . 1107–13 . June 2010 . 20299374 . 4890964 . 10.2215/CJN.08721209 .
  31. Genovese G, Friedman DJ, Ross MD, Lecordier L, Uzureau P, Freedman BI, Bowden DW, Langefeld CD, Oleksyk TK, Uscinski Knob AL, Bernhardy AJ, Hicks PJ, Nelson GW, Vanhollebeke B, Winkler CA, Kopp JB, Pays E, Pollak MR . 6 . Association of trypanolytic ApoL1 variants with kidney disease in African Americans . Science . 329 . 5993 . 841–5 . August 2010 . 20647424 . 2980843 . 10.1126/science.1193032 . 2010Sci...329..841G .
  32. Tzur S, Rosset S, Shemer R, Yudkovsky G, Selig S, Tarekegn A, Bekele E, Bradman N, Wasser WG, Behar DM, Skorecki K . 6 . Missense mutations in the APOL1 gene are highly associated with end stage kidney disease risk previously attributed to the MYH9 gene . Human Genetics . 128 . 3 . 345–50 . September 2010 . 20635188 . 2921485 . 10.1007/s00439-010-0861-0 .
  33. Fadem, Stephen Z., M.D., FACP, FASN. Calculators for HealthCare Professionals. National Kidney Foundation. 13 Oct 2008
  34. Web site: GFR calculator . Kidney.org . 2011-09-25.
  35. Meyer TW, Hostetter TH . Uremia . The New England Journal of Medicine . 357 . 13 . 1316–25 . September 2007 . 17898101 . 10.1056/NEJMra071313 .
  36. Web site: Urinary indices - fractional excretion of sodium (FENA), renal failure index. Acute tubular necrosis .
  37. Stapleton . F. Bruder . Jones . Deborah P. . Green . Robert S. . 1987-09-01 . Acute renal failure in neonates: Incidence, etiology and outcome . Pediatric Nephrology . en . 1 . 3 . 314–320 . 10.1007/BF00849230 . 3153295 . 23333812 . 1432-198X.
  38. Tonolini M, Ierardi AM, Carrafiello G . Letter to the editor: spontaneous renal haemorrhage in end-stage renal disease . Insights into Imaging . 6 . 6 . 693–695 . December 2015 . 26472545 . 4656237 . 10.1007/s13244-015-0439-4 .
  39. Rughooputh MS, Zeng R, Yao Y . Protein Diet Restriction Slows Chronic Kidney Disease Progression in Non-Diabetic and in Type 1 Diabetic Patients, but Not in Type 2 Diabetic Patients: A Meta-Analysis of Randomized Controlled Trials Using Glomerular Filtration Rate as a Surrogate . PLOS ONE . 10 . 12 . e0145505 . 28 December 2015 . 26710078 . 4692386 . 10.1371/journal.pone.0145505 . 2015PLoSO..1045505R . free .
  40. Chauveau P, Combe C, Fouque D, Aparicio M . Vegetarianism: advantages and drawbacks in patients with chronic kidney diseases . Journal of Renal Nutrition . 23 . 6 . 399–405 . November 2013 . 24070587 . 10.1053/j.jrn.2013.08.004 .
  41. Bernstein AM, Treyzon L, Li Z . Are high-protein, vegetable-based diets safe for kidney function? A review of the literature . Journal of the American Dietetic Association . 107 . 4 . 644–50 . April 2007 . 17383270 . 10.1016/j.jada.2007.01.002 . 39551628 .
  42. Smart NA, Dieberg G, Ladhani M, Titus T . Early referral to specialist nephrology services for preventing the progression to end-stage kidney disease . The Cochrane Database of Systematic Reviews . 6 . CD007333 . June 2014 . 24938824 . 10.1002/14651858.CD007333.pub2 .
  43. Book: Current Medical Diagnosis & Treatment 2018. Dirkx TC, Woodell T, Watnick S . 2017. McGraw-Hill Education. Papadakis MA, McPhee SJ, Rabow MW . New York, NY.