Polynomial differential form explained
In algebra, the ring of polynomial differential forms on the standard n-simplex is the differential graded algebra:
([n])=Q[t0,...,tn,dt0,...,dtn]/(\sumti-1,\sumdti).
Varying
n, it determines the
simplicial commutative dg algebra:
(each
induces the map
([m])\to
([n]),ti\mapsto\sumu(j)=itj
).
References
- Aldridge Bousfield and V. K. A. M. Gugenheim, §1 and §2 of: On PL De Rham Theory and Rational Homotopy Type, Memoirs of the A. M. S., vol. 179, 1976.
- Hinich. Vladimir. 1997-02-11. Homological algebra of homotopy algebras. q-alg/9702015.
External links
- https://ncatlab.org/nlab/show/differential+forms+on+simplices
- https://mathoverflow.net/questions/220532/polynomial-differential-forms-on-bg