Polyketide synthase explained

Polyketide synthases (PKSs) are a family of multi-domain enzymes or enzyme complexes that produce polyketides, a large class of secondary metabolites, in bacteria, fungi, plants, and a few animal lineages. The biosyntheses of polyketides share striking similarities with fatty acid biosynthesis.[1] [2]

The PKS genes for a certain polyketide are usually organized in one operon or in gene clusters. Type I and type II PKSs form either large modular protein complexes or dissociable molecular assemblies; type III PKSs exist as smaller homodimeric proteins.[3] [4]

Classification

PKSs can be classified into three types:

Modules and domains

Each type I polyketide-synthase module consists of several domains with defined functions, separated by short spacer regions. The order of modules and domains of a complete polyketide-synthase is as follows (in the order N-terminus to C-terminus):

Domains:

The polyketide chain and the starter groups are bound with their carboxy functional group to the SH groups of the ACP and the KS domain through a thioester linkage: R-C(=O)OH + HS-protein <=> R-C(=O)S-protein + H2O.

The ACP carrier domains are similar to the PCP carrier domains of nonribosomal peptide synthetases, and some proteins combine both types of modules.

Stages

The growing chain is handed over from one thiol group to the next by trans-acylationsand is released at the end by hydrolysis or by cyclization (alcoholysis or aminolysis).

Starting stage:

Elongation stages:

Termination stage:

Pharmacological relevance

Polyketide synthases are an important source of naturally occurring small molecules used for chemotherapy.[15] For example, many of the commonly used antibiotics, such as tetracycline and macrolides, are produced by polyketide synthases. Other industrially important polyketides are sirolimus (immunosuppressant), erythromycin (antibiotic), lovastatin (anticholesterol drug), and epothilone B (anticancer drug).[16]

Polyketides are a large family of natural products widely used as drugs, pesticides, herbicides, and biological probes.[17]

There are antifungal and antibacterial polyketide compounds, namely ophiocordin and ophiosetin.

And are researched for the synthesis of biofuels and industrial chemicals.[18]

Ecological significance

Only about 1% of all known molecules are natural products, yet it has been recognized that almost two thirds of all drugs currently in use are at least in part derived from a natural source.[19] This bias is commonly explained with the argument that natural products have co-evolved in the environment for long time periods and have therefore been pre-selected for active structures. Polyketide synthase products include lipids with antibiotic, antifungal, antitumor, and predator-defense properties; however, many of the polyketide synthase pathways that bacteria, fungi and plants commonly use have not yet been characterized.[20] [21] Methods for the detection of novel polyketide synthase pathways in the environment have therefore been developed. Molecular evidence supports the notion that many novel polyketides remain to be discovered from bacterial sources.[22] [23]

See also

Notes and References

  1. Khosla . C. . Gokhale . R. S. . Jacobsen . J. R. . Cane . D. E. . Tolerance and Specificity of Polyketide Synthases . 10.1146/annurev.biochem.68.1.219 . Annual Review of Biochemistry . 68 . 219–253 . 1999 . 10872449 .
  2. Jenke-Kodama . H. . Sandmann . A. . Müller . R. . Dittmann . E. . Evolutionary Implications of Bacterial Polyketide Synthases . 10.1093/molbev/msi193 . Molecular Biology and Evolution . 22 . 10 . 2027–2039 . 2005 . 15958783 . free .
  3. Book: 10.1016/B978-0-12-394290-6.00014-8 . Structure–Function Analyses of Plant Type III Polyketide Synthases . Natural Product Biosynthesis by Microorganisms and Plants, Part A . Methods in Enzymology . 2012 . Weng . Jing-Ke . Noel . Joseph P. . 515 . 317–335 . 22999180 . 978-0-12-394290-6 .
  4. Pfeifer . Blaine A. . Khosla . Chaitan . Biosynthesis of Polyketides in Heterologous Hosts . Microbiology and Molecular Biology Reviews . March 2001 . 65 . 1 . 106–118 . 10.1128/MMBR.65.1.106-118.2001 . 11238987 . 99020 .
  5. Sattely . Elizabeth S. . Fischbach . Michael A. . Walsh . Christopher T. . Total biosynthesis: in vitro reconstitution of polyketide and nonribosomal peptide pathways . Natural Product Reports . 2008 . 25 . 4 . 757–793 . 10.1039/b801747f. 18663394 .
  6. Weissman . Kira J. . Bacterial Type I Polyketide Synthases . Comprehensive Natural Products III . 2020 . 4–46 . 10.1016/b978-0-12-409547-2.14644-x. 9780081026915 . 201202295 .
  7. Helfrich . Eric J. N. . Piel . Jörn . Biosynthesis of polyketides by trans-AT polyketide synthases . Natural Product Reports . 2016 . 33 . 2 . 231–316 . 10.1039/c5np00125k. 26689670 .
  8. The polyketide metabolites . General Pharmacology: The Vascular System . November 1992 . 23 . 6 . 1228 . 10.1016/0306-3623(92)90327-g.
  9. Hertweck . Christian . Luzhetskyy . Andriy . Rebets . Yuri . Bechthold . Andreas . Type II polyketide synthases: gaining a deeper insight into enzymatic teamwork . Nat. Prod. Rep. . 2007 . 24 . 1 . 162–190 . 10.1039/B507395M. 17268612 .
  10. Sattely . Elizabeth S. . Fischbach . Michael A. . Walsh . Christopher T. . Total biosynthesis: in vitro reconstitution of polyketide and nonribosomal peptide pathways . Natural Product Reports . 2008 . 25 . 4 . 757–793 . 10.1039/b801747f. 18663394 .
  11. Abe . Ikuro . Morita . Hiroyuki . Structure and function of the chalcone synthase superfamily of plant type III polyketide synthases . Natural Product Reports . 2010 . 27 . 6 . 809–838 . 10.1039/b909988n. 20358127 .
  12. Shen . B . Polyketide biosynthesis beyond the type I, II and III polyketide synthase paradigms . Current Opinion in Chemical Biology . April 2003 . 7 . 2 . 285–295 . 10.1016/S1367-5931(03)00020-6. 12714063 .
  13. Wong . Chin Piow . Morita . Hiroyuki . Bacterial Type III Polyketide Synthases . Comprehensive Natural Products III . 2020 . 250–265 . 10.1016/b978-0-12-409547-2.14640-2. 9780081026915 . 195410516 .
  14. Shimizu . Yugo . Ogata . Hiroyuki . Goto . Susumu . Type III Polyketide Synthases: Functional Classification and Phylogenomics . ChemBioChem . 3 January 2017 . 18 . 1 . 50–65 . 10.1002/cbic.201600522. 27862822 . 45980356 . free .
  15. Koehn . F. E. . Carter . G. T. . 10.1038/nrd1657 . The evolving role of natural products in drug discovery . Nature Reviews Drug Discovery . 4 . 3 . 206–220 . 2005 . 15729362 . 32749678 .
  16. Wawrik . B. . Kerkhof . L. . Zylstra . G. J. . Kukor . J. J. . Identification of Unique Type II Polyketide Synthase Genes in Soil . 10.1128/AEM.71.5.2232-2238.2005 . Applied and Environmental Microbiology . 71 . 5 . 2232–2238 . 2005 . 15870305 . 1087561 . 2005ApEnM..71.2232W .
  17. Pankewitz . Florian . Hilker . Monika . Polyketides in insects: ecological role of these widespread chemicals and evolutionary aspects of their biogenesis . Biological Reviews . May 2008 . 83 . 2 . 209–226 . 10.1111/j.1469-185X.2008.00040.x . 18410406 . 27702684 .
  18. Cai . Wenlong . Zhang . Wenjun . Engineering modular polyketide synthases for production of biofuels and industrial chemicals . Current Opinion in Biotechnology . 1 April 2018 . 50 . 32–38 . 10.1016/j.copbio.2017.08.017 . 28946011 . 5862724 .
  19. Von Nussbaum . F. . Brands . M. . Hinzen . B. . Weigand . S. . Häbich . D. . Antibacterial Natural Products in Medicinal Chemistry—Exodus or Revival? . 10.1002/anie.200600350 . Angewandte Chemie International Edition . 45 . 31 . 5072–5129 . 2006 . 16881035 .
  20. Castoe . T. A. . Stephens . T. . Noonan . B. P. . Calestani . C. . A novel group of type I polyketide synthases (PKS) in animals and the complex phylogenomics of PKSs . 10.1016/j.gene.2006.11.005 . Gene . 392 . 1–2 . 47–58 . 2007 . 17207587 .
  21. Ridley . C. P. . Lee . H. Y. . Khosla . C. . 10.1073/pnas.0710107105 . Chemical Ecology Special Feature: Evolution of polyketide synthases in bacteria . Proceedings of the National Academy of Sciences . 105 . 12 . 4595–4600 . 2008 . 18250311 . 2290765 . 2008PNAS..105.4595R . free .
  22. 10.1111/j.1574-6968.1999.tb08770.x . Metsä-Ketelä . M. . Salo . V. . Halo . L. . Hautala . A. . Hakala . J. . Mäntsälä . P. . Ylihonko . K. . An efficient approach for screening minimal PKS genes from Streptomyces . FEMS Microbiology Letters . 180 . 1 . 1–6 . 1999 . 10547437.
  23. Wawrik . B. . Kutliev . D. . Abdivasievna . U. A. . Kukor . J. J. . Zylstra . G. J. . Kerkhof . L. . 10.1128/AEM.02611-06 . Biogeography of Actinomycete Communities and Type II Polyketide Synthase Genes in Soils Collected in New Jersey and Central Asia . Applied and Environmental Microbiology . 73 . 9 . 2982–2989 . 2007 . 17337547 . 1892886 . 2007ApEnM..73.2982W .