Polyhydride Explained

A polyhydride or superhydride is a compound that contains an abnormally large amount of hydrogen. This can be described as high hydrogen stoichiometry. Examples include iron pentahydride,, and . By contrast, the more well known lithium hydride only has one hydrogen atom.[1]

Polyhydrides are only known to be stable under high pressure.[1]

Polyhydrides are important because they can form substances with a very high density of hydrogen. They may resemble the elusive metallic hydrogen, but can be made under lower pressures. One possibility is that they could be superconductors. Hydrogen sulfide under high pressures forms units, and can be a superconductor at 203K and a pressure of 1.5 million atmospheres.[1]

Structures

The polyhydrides of alkaline earth and alkali metals contain cage structures. Also hydrogen may be clustered into,, or units. Polyhydrides of transition metals may have the hydrogen atoms arranged around the metal atom. Computations suggest that increasing hydrogen levels will reduce the dimensionality of the metal arrangement, so that layers form separated by hydrogen sheets.[1] The substructure is linear.[2]

would form triangular structures in the hypothetical .[2]

Compounds

When sodium hydride is compressed with hydrogen, and form. These are formed at 30 GPa and 2,100 K.[2]

Heating and compressing a metal with ammonia borane avoids using bulky hydrogen, and produces boron nitride as a decomposition product in addition to the polyhydride.

formulanametemperature°CpressureGPacrystal structurespace groupa Åbcβcell volumeformulaeperunit cellTc KCommentrefs
lithium dihydride27130[3]
Lithium hexahydride
Lithium heptahydride
sodium trihydrideorthorhombicCmcm3.332 Å6.354 Å4.142 Å9087.694
sodium heptahydridemonoclinicCc6.993.5975.54169.465130.5
50022double hexagon[4]
600121
pseudo cubicPmmsemiconductormetallize > 220 GPa[5]
C2/m
138triclinicP1
Barium dodecahydride75pseudo cubic5.435.415.3739.4820K[6] [7]
iron pentahydride120066tetragonalI4/mmm
Sulfur trihydride25150cubicImm203K[8]
Selenium trihydride10[9]
yttrium tetrahydride700160I4/mmm[10]
yttrium hexahydride700160Im-3m224[11] [12]
yttrium nonahydride400237P63/mmc243
Lanthanum decahydride1000170cubicFmm5.095.095.091324250K[13] [14]
Lanthanum decahydride25121HexagonalRm3.673.678.831
Lanthanum undecahydride2150130-160TetragonalP4/nmm168
Lanthanum dodecahydrideCubicinsulating
Lanthanum heptahydride25109monoclinicC2/m6.443.83.6913563.92
Cerium nonahydride93hexagonalP63/mmc3.7115.54333.053100K[15]
Cerium decahydrideFmm115K[16]
Praseodymium nonahydride90-140P63/mmc3.605.4761.555K 9K[17] [18]
Praseodymium nonahydride120F43m4.9812469K
Neodymium tetrahydride85-135tetragonalI4/mmm2.82345,7808[19]
Neodymium heptahydride85-135monoclinicC2/c3.31776.2525.70789.354
Neodymium nonahydride110-130hexagonalP63/mmc3.4585.935
50-130I4/mmm[20]
1600130cubicPmn5.865
Europium nonahydride86-130cubicF3m
Europium nonahydride>130hexagonalP63/mmc
Thorium tetrahydride86I4/mmm2.9034.42157.232[21]
Thorium tetrahydride88trigonalP3215.5003.2986.18
Thorium tetrahydrideorthorhombicFmmm
Thorium hexahydride86-104Cmc2132.36
Thorium nonahydride2100152hexagonalP63/mmc3.7135.54166.20
Thorium decahydride180085-185cubicFmm5.29148.0161
Thorium decahydride<85Immm5.3043.2873.64774.03
Uranium heptahydride200063fccP63/mmc
Uranium octahydride3001-55fccFmm
Uranium nonahydride40-55fccP63/mmc

Predicted

Using computational chemistry many other polyhydrides are predicted, including,[22],[23],[23],[24],,,[22],,[25],[26],,,[27],[28],,[22],,,[29] and,[30],,,[31],,,,,[32],,, and,[33],,,,[34],[35],,[22],,,[36],[37] (subsequently discovered),[22],[38] (although may be stable instead)[39],,[40],,,[41],[42],[43],,[44],,[22],,[22],,,,[45],,,,,[22], .[46]

Among the transition elements, in a C2/m structure around 200 GPa is predicted to have a superconducting transition temperature of 71.4 K. in a P63/mmm space group has a lower transition temperature.[47]

Properties

Superconduction

Under suitably high pressures polyhydrides may become superconducting. Characteristics of substances that are predicted to have high superconducting temperatures are a high phonon frequency, which will happen for light elements, and strong bonds. Hydrogen is the lightest and so will have the highest frequency of vibration. Even changing the isotope to deuterium will lower the frequency and lower the transition temperature. Compounds with more hydrogen will resemble the predicted metallic hydrogen. However, superconductors also tend to be substances with high symmetry and also need the electrons not to be locked into molecular subunits, and require large numbers of electrons in states near the Fermi level. There should also be electron-phonon coupling which happens when the electric properties are tied to the mechanical position of the hydrogen atoms.[48] [49] [50] The highest superconduction critical temperatures are predicted to be in groups 3 and 3 of the periodic table. Late transitions elements, heavy lanthanides or actinides have extra d- or f-electrons that interfere with superconductivity.[51]

For example, lithium hexahydride is predicted to lose all electrical resistance below 38 K at a pressure of 150 GPa. The hypothetical has a predicted superconducting transition temperature at 31 K at 200 GPa.[52] is predicted to have a Tc of 400 K around 300 GPa.[53] could have a Tc of 260 K at 120 GPa. doped is also predicted to have a transition temperature above the 203 K measured for (contaminated with solid sulfur).[54] Rare earth and actinide polyhydrides may also have highish transition temperatures, for example, with Tc = 241 K.[33], which can be decompressed to room temperature without decomposition, is predicted to have a transition temperature of 193 K.[33], if it could be ever made, is predicted to superconduct at temperatures over 204 K, and would be similarly conducting under lower pressures (150 GPa).[55]

actually is a van der Waals solid with formula with a measured Tc of 105 K under a pressure of 135 GPa.[9]

Ternary superhydrides

Ternary superhydrides open up the possibility of many more formulas.[56] For example, may also be superconducting at high temperatures (200 °C).[57] A compound of lanthanum, boron and hydrogen is speculated to be a "hot" superconductor (550 K).[58] [59] Elements may substitute for others and so modify the properties eg and can be made to have a slightly higher critical temperature than or .[60]

See also

Notes and References

  1. Pépin. C. M.. Geneste. G.. Dewaele. A.. Mezouar. M.. Loubeyre. P.. Synthesis of FeH5 : A layered structure with atomic hydrogen slabs. Science. 27 July 2017. 357. 6349. 382–385. 10.1126/science.aan0961. 28751605. 2017Sci...357..382P. free.
  2. Struzhkin. Viktor V.. Kim. Duck Young. Stavrou. Elissaios. Muramatsu. Takaki. Mao. Ho-kwang. Pickard. Chris J.. Needs. Richard J.. Prakapenka. Vitali B.. Goncharov. Alexander F.. Synthesis of sodium polyhydrides at high pressures. Nature Communications. 28 July 2016. 7. 12267. 10.1038/ncomms12267. 27464650. 4974473. 2016NatCo...712267S.
  3. Pépin. Charles. Loubeyre. Paul. Occelli. Florent. Dumas. Paul. Synthesis of lithium polyhydrides above 130 GPa at 300 K. Proceedings of the National Academy of Sciences. 23 June 2015. 112. 25. 7673–7676. 10.1073/pnas.1507508112. 26056306. 2015PNAS..112.7673P. 4485130. free.
  4. 2017-03-13. Synthesis of Calcium polyhydrides at high pressure and high temperature. Bulletin of the American Physical Society. 62. 4. B35.008. 2017APS..MARB35008M. Mishra. Ajay Kumar. Ahart. Muhtar. Somayazulu. Maddury. Park. C. Y. Hemley. Russel J.
  5. Semenok . Dmitrii V. . Chen . Wuhao . Huang . Xiaoli . Zhou . Di . Kruglov . Ivan A. . Mazitov . Arslan B. . Galasso . Michele . Tantardini . Christian . Gonze . Xavier . Kvashnin . Alexander G. . Oganov . Artem R. . 2022-06-03 . Sr‐Doped Superionic Hydrogen Glass: Synthesis and Properties of SrH 22 . Advanced Materials . 34 . 27 . en . 2200924 . 10.1002/adma.202200924 . 35451134 . 2110.15628 . 2022AdM....3400924S . 240288572 . 0935-9648.
  6. Web site: High-Pressure Synthesis of Barium Superhydrides: Pseudocubic BaH12. chen. Wuhao. April 2020. ResearchGate. en. 2020-04-28.
  7. Chen . Wuhao . Semenok . Dmitrii V. . Kvashnin . Alexander G. . Huang . Xiaoli . Kruglov . Ivan A. . Galasso . Michele . Song . Hao . Duan . Defang . Goncharov . Alexander F. . Prakapenka . Vitali B. . Oganov . Artem R. . Cui . Tian . Synthesis of molecular metallic barium superhydride: pseudocubic BaH12 . Nature Communications . December 2021 . 12 . 1 . 273 . 10.1038/s41467-020-20103-5. 33431840 . 7801595 . 2004.12294 . 2021NatCo..12..273C . free.
  8. Shylin. S. I.. Ksenofontov. V.. Troyan. I. A.. Eremets. M. I.. Drozdov. A. P.. September 2015. Conventional superconductivity at 203 kelvin at high pressures in the sulfur hydride system. Nature. en. 525. 7567. 73–76. 10.1038/nature14964. 26280333. 1476-4687. 1506.08190. 2015Natur.525...73D. 4468914.
  9. Novel Synthesis Route and Observation of Superconductivity in the Se-H System at Extreme Conditions . 63 . 1 . X38.008 . APS March Meeting Abstracts . 9 March 2018. Mishra, A. K. . Somayazulu, M. . Ahart, M. . Karandikar, A. . Hemley, R. J. . Struzhkin, V.. 2018APS..MARX38008M.
  10. Kong. P. P.. Minkov. V. S.. Kuzovnikov. M. A.. Besedin. S. P.. Drozdov. A. P.. Mozaffari. S.. Balicas. L.. Balakirev. F. F.. Prakapenka. V. B.. Greenberg. E.. Knyazev. D. A.. 2019-09-23. Superconductivity up to 243 K in yttrium hydrides under high pressure. 1909.10482. cond-mat.supr-con.
  11. Troyan. I. A.. Semenok. D. V.. Kvashnin. A. G.. Ivanova. A. G.. Prakapenka. V. B.. Greenberg. E.. Gavriliuk. A. G.. Lyubutin. I. S.. Struzhkin. V. V.. Oganov. A. R.. Anomalous High‐Temperature Superconductivity in YH 6. Advanced Materials. 2021. 33. 15. e2006832. 10.1002/adma.202006832 . 0935-9648. 33751670. en. 1908.01534. 2021AdM....3306832T . 219636252.
  12. Troyan . Ivan A. . Semenok . Dmitrii V. . Kvashnin . Alexander G. . Sadakov . Andrey V. . Sobolevskiy . Oleg A. . Pudalov . Vladimir M. . Ivanova . Anna G. . Prakapenka . Vitali B. . Greenberg . Eran . Gavriliuk . Alexander G. . Lyubutin . Igor S. . Struzhkin . Viktor V. . Bergara . Aitor . Errea . Ion . Bianco . Raffaello . Calandra . Matteo . Mauri . Francesco . Monacelli . Lorenzo . Akashi . Ryosuke . Oganov . Artem R. . Anomalous High‐Temperature Superconductivity in YH 6 . Advanced Materials . 10 March 2021 . 33 . 15 . 2006832 . 10.1002/adma.202006832. 0935-9648. 33751670 . 1908.01534 . 2021AdM....3306832T . 219636252.
  13. Geballe. Zachary M.. Liu. Hanyu. Mishra. Ajay K.. Ahart. Muhtar. Somayazulu. Maddury. Meng. Yue. Baldini. Maria. Hemley. Russell J.. Synthesis and Stability of Lanthanum Superhydrides. Angewandte Chemie International Edition. 15 January 2018. 57. 3. 688–692. 10.1002/anie.201709970. 29193506. 2018APS..MARX38010G. free.
  14. Drozdov . A. P. . Kong . P. P. . Minkov . V. S. . Besedin . S. P. . Kuzovnikov . M. A. . Mozaffari . S. . Balicas . L. . Balakirev . F. F. . Graf . D. E. . Prakapenka . V. B. . Greenberg . E. . Knyazev . D. A. . Tkacz . M. . Eremets . M. I. . Superconductivity at 250 K in lanthanum hydride under high pressures . Nature . 22 May 2019 . 569 . 7757 . 528–531 . 10.1038/s41586-019-1201-8. 31118520 . 1812.01561 . 2019Natur.569..528D . 119231000.
  15. Synthesis of clathrate cerium superhydride CeH9 below 100 GPa with atomic hydrogen sublattice. Nature Communications. 10. 1. 4453. Salke. Nilesh P.. May 2018. 1805.02060. 10.1038/s41467-019-12326-y. 31575861. 6773858.
  16. Chen. Wuhao. Semenok. Dmitrii V.. Huang. Xiaoli. Shu. Haiyun. Li. Xin. Duan. Defang. Cui. Tian. Oganov. Artem R.. 2021-09-09. High-Temperature Superconducting Phases in Cerium Superhydride with a T c up to 115 K below a Pressure of 1 Megabar. Physical Review Letters. en. 127. 11. 117001. 10.1103/PhysRevLett.127.117001. 34558917. 2101.01315. 2021PhRvL.127k7001C. 230524009. 0031-9007.
  17. Zhou. Di. Semenok. Dmitrii. Defang Duan. Xie. Hui. Xiaoli Huang. Wuhao Chen. Li. Xin. Bingbing Liu. Oganov. Artem R. 2019. Superconducting Praseodymium Superhydrides. Unpublished. 6. 9. eaax6849. en. 10.1126/sciadv.aax6849. 32158937. 7048426. 1904.06643. 2020SciA....6.6849Z.
  18. Zhou. Di. Semenok. Dmitrii V.. Duan. Defang. Xie. Hui. Chen. Wuhao. Huang. Xiaoli. Li. Xin. Liu. Bingbing. Oganov. Artem R.. Cui. Tian. February 2020. Superconducting praseodymium superhydrides. Science Advances. en. 6. 9. eaax6849. 10.1126/sciadv.aax6849. 2375-2548. 7048426. 32158937. 1904.06643. 2020SciA....6.6849Z.
  19. Zhou. Di. Semenok. Dmitrii V.. Xie. Hui. Huang. Xiaoli. Duan. Defang. Aperis. Alex. Oppeneer. Peter M.. Galasso. Michele. Kartsev. Alexey I.. Kvashnin. Alexander G.. Oganov. Artem R.. 2020-02-12. High-Pressure Synthesis of Magnetic Neodymium Polyhydrides. Journal of the American Chemical Society. 142. 6. 2803–2811. 10.1021/jacs.9b10439. 31967807. 0002-7863. 1908.08304. 201330599.
  20. Semenok. Dmitrii V.. Zhou. Di. Kvashnin. Alexander G.. Huang. Xiaoli. Galasso. Michele. Kruglov. Ivan A.. Ivanova. Anna G.. Gavriliuk. Alexander G.. Chen. Wuhao. Tkachenko. Nikolay V.. Boldyrev. Alexander I.. 2020-12-09. Novel Strongly Correlated Europium Superhydrides. The Journal of Physical Chemistry Letters. 12. 1. en. 32–40. 10.1021/acs.jpclett.0c03331. 33296213. 1948-7185. 2012.05595. 228084018.
  21. Semenok . D. V. . Kvashnin . A. G . Ivanova . A. G. . Troayn . I. A. . Oganov . A. R. . Synthesis of ThH4, ThH6, ThH9 and ThH10 : a route to room-temperature superconductivity . 10.13140/RG.2.2.31274.88003. 2019.
  22. Duan. Defang. Liu. Yunxian. Ma. Yanbin. Shao. Ziji. Liu. Bingbing. Cui. Tian. Structure and superconductivity of hydrides at high pressures. National Science Review. 4. 28 April 2016. 121–135. 10.1093/nsr/nww029. free.
  23. Chen. Yangmei. Geng. Hua Y.. Yan. Xiaozhen. Sun. Yi. Wu. Qiang. Chen. Xiangrong. Prediction of Stable Ground-State Lithium Polyhydrides under High Pressures. Inorganic Chemistry. 56. 7. 3867–3874. 10.1021/acs.inorgchem.6b02709. 28318270. 2017. 1705.04199. 21976165.
  24. Shamp. Andrew. Hooper. James. Zurek. Eva. 3 September 2012. Compressed Cesium Polyhydrides: Cs+ Sublattices and H3- Three-Connected Nets. Inorganic Chemistry. 51. 17. 9333–9342. 10.1021/ic301045v. 22897718.
  25. Zurek. Eva. 6 June 2016. Hydrides of the Alkali Metals and Alkaline Earth Metals Under Pressure. Comments on Inorganic Chemistry. 37. 2. 78–98. 10.1080/02603594.2016.1196679. 99251100.
  26. Wang. H.. Tse. J. S.. Tanaka. K.. Iitaka. T.. Ma. Y.. Superconductive sodalite-like clathrate calcium hydride at high pressures. Proceedings of the National Academy of Sciences. 6 April 2012. 109. 17. 6463–6466. 10.1073/pnas.1118168109. 22492976. 3340045. 2012PNAS..109.6463W. 1203.0263. free.
  27. Lonie. David C.. Hooper. James. Altintas. Bahadir. Zurek. Eva. Metallization of magnesium polyhydrides under pressure. Physical Review B. 19 February 2013. 87. 5. 054107. 10.1103/PhysRevB.87.054107. 2013PhRvB..87e4107L. 1301.4750. 85453835.
  28. Hooper. James. Terpstra. Tyson. Shamp. Andrew. Zurek. Eva. Composition and Constitution of Compressed Strontium Polyhydrides. The Journal of Physical Chemistry C. 27 March 2014. 118. 12. 6433–6447. 10.1021/jp4125342.
  29. Qian. Shifeng. 2017. Theoretical study of stability and superconductivity of. Physical Review B. 96. 9. 094513. 10.1103/physrevb.96.094513. 2017PhRvB..96i4513Q.
  30. Li. Yinwei. Hao. Jian. Liu. Hanyu. Tse. John S.. Wang. Yanchao. Ma. Yanming. 5 May 2015. Pressure-stabilized superconductive yttrium hydrides. Scientific Reports. 5. 1. 9948. 2015NatSR...5E9948L. 10.1038/srep09948. 25942452. 4419593.
  31. Liu. Hanyu. Naumov. Ivan I.. Hoffmann. Roald. Ashcroft. N. W.. Hemley. Russell J.. Potential high-Tc superconducting lanthanum and yttrium hydrides at high pressure. Proceedings of the National Academy of Sciences. 3 July 2017. 114. 27. 6990–6995. 10.1073/pnas.1704505114. 28630301. 5502634. 2017PNAS..114.6990L. free.
  32. Tsuppayakorn-aek . Prutthipong . Pinsook . Udomsilp . Luo . Wei . Ahuja . Rajeev . Bovornratanaraks . Thiti . Superconductivity of Superhydride CeH10 under High Pressure . Materials Research Express . 12 August 2020 . 7 . 8 . 086001 . 10.1088/2053-1591/ababc2 . 2020MRE.....7h6001T . 225379054 . free .
  33. News: Kvashnin. Alexander G.. Semenok. Dmitry V.. Kruglov. Ivan A.. Oganov. Artem R.. High-Temperature Superconductivity in Th-H System at Pressure Conditions. 1711.00278. November 2017. 10.1021/acsami.8b17100.
  34. Kruglov. Ivan A.. Kvashnin. Alexander G.. Goncharov. Alexander F.. Oganov. Artem R.. Lobanov. Sergey. Holtgrewe. Nicholas. Yanilkin. Alexey V.. High-temperature superconductivity of uranium hydrides at near-ambient conditions. 1708.05251. 17 August 2017. cond-mat.mtrl-sci.
  35. Hou. Pugeng. Zhao. Xiusong. Tian. Fubo. Li. Da. Duan. Defang. Zhao. Zhonglong. Chu. Binhua. Liu. Bingbing. Cui. Tian. High pressure structures and superconductivity of AlH3(H2) predicted by first principles. RSC Adv.. 2015. 5. 7. 5096–5101. 10.1039/C4RA14990D. 2015RSCAd...5.5096H. 97440127.
  36. Mahdi Davari Esfahani. M.. Wang. Zhenhai. Oganov. Artem R.. Dong. Huafeng. Zhu. Qiang. Wang. Shengnan. Rakitin. Maksim S.. Zhou. Xiang-Feng. Superconductivity of novel tin hydrides (Snn Hm) under pressure. Scientific Reports. 11 March 2016. 6. 1. 22873. 10.1038/srep22873. 26964636. 4786816. 2016NatSR...622873M. 1512.07604.
  37. Cheng. Ya. Zhang. Chao. Wang. Tingting. Zhong. Guohua. Yang. Chunlei. Chen. Xiao-Jia. Lin. Hai-Qing. 12 November 2015. Pressure-induced superconductivity in H2-containing hydride PbH4(H2)2. Scientific Reports. 5. 1. 16475. 2015NatSR...516475C. 10.1038/srep16475. 26559369. 4642309.
  38. Szcze¸śniak. R.. Szcze¸śniak. D.. Durajski. A.P.. April 2014. Thermodynamics of the superconducting phase in compressed GeH4(H2)2. Solid State Communications. 184. 6–11. 2014SSCom.184....6S. 10.1016/j.ssc.2013.12.036.
  39. Davari Esfahani. M. Mahdi. Oganov. Artem R.. Niu. Haiyang. Zhang. Jin. 10 April 2017. Superconductivity and unexpected chemistry of germanium hydrides under pressure. Physical Review B. 95. 13. 134506. 2017PhRvB..95m4506D. 10.1103/PhysRevB.95.134506. 1701.05600. 43481894.
  40. Fu. Yuhao. Du. Xiangpo. Zhang. Lijun. Peng. Feng. Zhang. Miao. Pickard. Chris J.. Needs. Richard J.. Singh. David J.. Zheng. Weitao. 22 March 2016. High-Pressure Phase Stability and Superconductivity of Pnictogen Hydrides and Chemical Trends for Compressed Hydrides. Chemistry of Materials. 28. 6. 1746–1755. 1510.04415. 10.1021/acs.chemmater.5b04638. Ma. Yanming. 54571045.
  41. Ma. Yanbin. Duan. Defang. Li. Da. Liu. Yunxian. Tian. Fubo. Yu. Hongyu. Xu. Chunhong. Shao. Ziji. Liu. Bingbing. 17 November 2015. High-pressure structures and superconductivity of bismuth hydrides. 1511.05291. Cui. Tian. cond-mat.supr-con.
  42. Zhang. Shoutao. Wang. Yanchao. Zhang. Jurong. Liu. Hanyu. Zhong. Xin. Song. Hai-Feng. Yang. Guochun. Zhang. Lijun. Ma. Yanming. 22 October 2015. Phase Diagram and High-Temperature Superconductivity of Compressed Selenium Hydrides. Scientific Reports. 5. 1. 15433. 2015NatSR...515433Z. 10.1038/srep15433. 26490223. 4614537. 1502.02607.
  43. Durajski. Artur P.. Szczęśniak. Radosław. 30 June 2017. First-principles study of superconducting hydrogen sulfide at pressure up to 500 GPa. Scientific Reports. 7. 1. 4473. 2017NatSR...7.4473D. 10.1038/s41598-017-04714-5. 28667259. 5493702.
  44. Zhong. Xin. Wang. Hui. Zhang. Jurong. Liu. Hanyu. Zhang. Shoutao. Song. Hai-Feng. Yang. Guochun. Zhang. Lijun. Ma. Yanming. 4 February 2016. Tellurium Hydrides at High Pressures: High-Temperature Superconductors. Physical Review Letters. 116. 5. 057002. 2016PhRvL.116e7002Z. 10.1103/PhysRevLett.116.057002. 26894729. 1503.00396. 14435357.
  45. Duan. Defang. Huang. Xiaoli. Tian. Fubo. Liu. Yunxian. Li. Da. Yu. Hongyu. Liu. Bingbing. Tian. Wenjing. Cui. Tian. Predicted Formation of H3+ in Solid Halogen Polyhydrides at High Pressures. The Journal of Physical Chemistry A. 12 November 2015. 119. 45. 11059–11065. 10.1021/acs.jpca.5b08183. 26469181. 2015JPCA..11911059D.
  46. Yan. Xiaozhen. Chen. Yangmei. Kuang. Xiaoyu. Xiang. Shikai. Structure, stability, and superconductivity of new Xe–H compounds under high pressure. The Journal of Chemical Physics. 28 September 2015. 143. 12. 124310. 10.1063/1.4931931. 26429014. 2015JChPh.143l4310Y. free.
  47. Li. Xiaofeng. Peng. Feng. Superconductivity of Pressure-Stabilized Vanadium Hydrides. Inorganic Chemistry. 56. 22. 13759–13765. 2 November 2017. 10.1021/acs.inorgchem.7b01686. 29094931.
  48. Peng. Feng. Sun. Ying. Pickard. Chris J.. Needs. Richard J.. Wu. Qiang. Ma. Yanming. Hydrogen Clathrate Structures in Rare Earth Hydrides at High Pressures: Possible Route to Room-Temperature Superconductivity. Physical Review Letters. 8 September 2017. 119. 10. 107001. 10.1103/PhysRevLett.119.107001. 28949166. 2017PhRvL.119j7001P.
  49. Pietronero. Luciano. Boeri. Lilia. Cappelluti. Emmanuele. Ortenzi. Luciano. Conventional/unconventional superconductivity in high-pressure hydrides and beyond: insights from theory and perspectives. Quantum Studies: Mathematics and Foundations. 5. 5–21. 9 September 2017. 10.1007/s40509-017-0128-8. 11573/1622515 . 139800480. free.
  50. Pinsook . Udomsilp . In search for near-room-temperature superconducting critical temperature of metal superhydrides under high pressure: A review . Journal of Metals, Materials and Minerals . July 2020 . 30 . 31 . 10.14456/jmmm.2020.18 .
  51. Semenok . Dmitrii V. . Kruglov . Ivan A. . Savkin . Igor A. . Kvashnin . Alexander G. . Oganov . Artem R. . On Distribution of Superconductivity in Metal Hydrides . Current Opinion in Solid State and Materials Science . April 2020 . 100808 . 10.1016/j.cossms.2020.100808 . 24. 2 . 1806.00865 . 2020COSSM..24j0808S . 119433896.
  52. Xie. Yu. Li. Quan. Oganov. Artem R.. Wang. Hui. Superconductivity of lithium-doped hydrogen under high pressure. Acta Crystallographica Section C. 31 January 2014. 70. 2. 104–111. 10.1107/S2053229613028337. 24508954.
  53. Szczȩśniak. R.. Durajski. A. P.. Superconductivity well above room temperature in compressed MgH6. Frontiers of Physics. 13 July 2016. 11. 6. 117406. 10.1007/s11467-016-0578-1. 2016FrPhy..11k7406S. 124245616.
  54. Eremets. M I. Drozdov. A P. High-temperature conventional superconductivity. Physics-Uspekhi. 30 November 2016. 59. 11. 1154–1160. 10.3367/UFNe.2016.09.037921. 2016PhyU...59.1154E. 126290095.
  55. 1802.05676. Semenok. Dmitrii V. Actinium hydrides AcH10, AcH12, AcH16 as high-temperature conventional superconductors. The Journal of Physical Chemistry Letters. 9. 8. 1920–1926. Kvashnin. Alexander G. Kruglov. Ivan A. Oganov. Artem R. 2018. 10.1021/acs.jpclett.8b00615. 29589444. 4620593.
  56. Sukmas . Wiwittawin . Tsuppayakorn-aek . Prutthipong . Pinsook . Udomsilp . Bovornratanaraks . Thiti . Near-room-temperature superconductivity of Mg/Ca substituted metal hexahydride under pressure . Journal of Alloys and Compounds . 30 December 2020 . 849 . 156434 . 10.1016/j.jallcom.2020.156434 . 225031775 .
  57. Flores-Livas . José A. . Arita . Ryotaro . A Prediction for "Hot" Superconductivity . Physics . 26 August 2019 . 12 . 96 . 10.1103/Physics.12.96. 2019PhyOJ..12...96F . free.
  58. Grockowiak . A. D. . Ahart . M. . Helm . T. . Coniglio . W. A. . Kumar . R. . Somayazulu . M. . Meng . Y. . Oliff . M. . Williams . V. . Ashcroft . N. W. . Hemley . R. J. . Tozer . S. W. . Hot Hydride Superconductivity Above 550 K . Frontiers in Electronic Materials . 2022 . 2 . 10.3389/femat.2022.837651 . 2006.03004 . en. free.
  59. Di Cataldo . Simone . von der Linden . Wolfgang . Boeri . Lilia . La-$X$-H hydrides: is hot superconductivity possible? . 2021-06-14 . cond-mat.supr-con . 2106.07266.
  60. Semenok . Dmitrii V. . Troyan . Ivan A. . Ivanova . Anna G. . Kvashnin . Alexander G. . Kruglov . Ivan A. . Hanfland . Michael . Sadakov . Andrey V. . Sobolevskiy . Oleg A. . Pervakov . Kirill S. . Lyubutin . Igor S. . Glazyrin . Konstantin V. . Giordano . Nico . Karimov . Denis N. . Vasiliev . Alexander L. . Akashi . Ryosuke . Pudalov . Vladimir M. . Oganov . Artem R. . Superconductivity at 253 K in lanthanum–yttrium ternary hydrides . Materials Today . July 2021 . S1369702121001309 . 10.1016/j.mattod.2021.03.025. 2012.04787 . 228064078.