Polychromatic symmetry explained

Polychromatic symmetry is a colour symmetry which interchanges three or more colours in a symmetrical pattern. It is a natural extension of dichromatic symmetry. The coloured symmetry groups are derived by adding to the position coordinates (x and y in two dimensions, x, y and z in three dimensions) an extra coordinate, k, which takes three or more possible values (colours).[1]

An example of an application of polychromatic symmetry is crystals of substances containing molecules or ions in triplet states, that is with an electronic spin of magnitude 1, should sometimes have structures in which the spins of these groups have projections of + 1, 0 and -1 onto local magnetic fields. If these three cases are present with equal frequency in an orderly array, then the magnetic space group of such a crystal should be three-coloured.[2] [3]

Example

The group has three different rotation centres of order three (120°), but no reflections or glide reflections.

There are two distinct ways of colouring the p3 pattern with three colours: p3[3]1 and p3[3]2 where the figure in square brackets indicates the number of colours, and the subscript distinguishes between multiple cases of coloured patterns.[5]

Taking a single motif in the pattern p3[3]1 it has a symmetry operation 3', consisting of a rotation by 120° and a cyclical permutation of the three colours white, green and red as shown in the animation.

This pattern p3[3]1 has the same colour symmetry as M. C. Escher's Hexagonal tessellation with animals: study of regular division of the plane with reptiles (1939). Escher reused the design in his 1943 lithograph Reptiles and it was also used as the cover art of Mott the Hoople’s debut album.

Group theory

Initial research by Wittke and Garrido (1959)[7] and by Niggli and Wondratschek (1960)[8] identified the relation between the colour groups of an object and the subgroups of the object's geometric symmetry group. In 1961 van der Waerden and Burckhardt[9] built on the earlier work by showing that colour groups can be defined as follows: in a colour group of a pattern (or object) each of its geometric symmetry operations s is associated with a permutation σ of the k colours in such a way that all the pairs (s,σ) form a group. Senechal showed that the permutations are determined by the subgroups of the geometric symmetry group G of the uncoloured pattern.[10] When each symmetry operation in G is associated with a unique colour permutation the pattern is said to be perfectly coloured.[11] [12]

The Waerden-Burckhardt theory defines a k-colour group G(H) as being determined by a subgroup H of index k in the symmetry group G.[13] If the subgroup H is a normal subgroup then the quotient group G/H permutes all the colours.[14]

History

Number of colour groups

Number of strip (frieze) k-colour groups for k ≤ 12
  Number of colours (k)
Underlying
group
2 3 4 5 6 7 8 9 10 11 12
p111 1 1 1 1 1 1 1 1 1 1 1
p1a1 1 1 1 1 1 1 1 1 1 1 1
p1m1 3 1 3 1 3 1 3 1 3 1 3
pm11 2 1 2 1 2 1 2 1 2 1 2
p112 2 1 2 1 2 1 2 1 2 1 2
pma2 3 1 3 1 3 1 3 1 3 1 3
pmm2 5 1 7 1 5 1 7 1 5 1 7
      Total strip
groups
17    7 19    7 17    7 19    7 17    7 19
Numbers of periodic (plane) k-colour groups for k ≤ 12[37]
  Number of colours (k)
Underlying
group
2 3 4 5 6 7 8 9 10 11 12
1 1 2 1 1 1 2 2 1 1 2
2 2 4 2 5 2 7 3 6 2 11
5 2 10 2 11 2 16 3 12 2 23
3 2 7 2 7 2 13 3 8 2 17
2 1 3 1 2 1 4 2 2 1 3
2 1 4 1 4 1 7 2 5 1 9
5 2 11 2 11 2 19 3 12 2 26
5 1 13 1 9 1 21 2 10 1 25
5 1 11 1 8 1 21 2 9 1 22
- 2 1 - 1 1 - 3 - - 4
1 2 1 - 5 - 1 3 - - 7
1 2 1 - 4 - 1 3 - - 7
2 - 5 1 2 - 9 1 4 - 9
3 - 7 - 2 - 13 1 3 - 10
5 - 13 - 2 - 28 1 3 - 16
1 2 1 - 5 1 1 3 - - 8
3 2 2 - 11 - 3 3 - - 20
Total periodic
groups
46 23 96 14 90 15 166 40 75 13 219

Both of the 3-colour p3 patterns, the unique 4-, 6-, 7-colour p3 patterns, one of the three 9-colour p3 patterns, and one of the four 12-colour p3 patterns are illustrated in the Example section above.

Further reading

Notes and References

  1. Bradley, C.J. and Cracknell, A.P. (2010). The mathematical theory of symmetry in solids: representation theory for point groups and space groups, Clarendon Press, Oxford, 677–681,
  2. Harker, D. (1981). The three-colored three-dimensional space groups, Acta Crystallogr., A37, 286-292,
  3. Mainzer, K. (1996). Symmetries of nature: a handbook for philosophy of nature and science, de Gruyter, Berlin, 162-168,
  4. Grünbaum, B. and Shephard, G.C. (1987). Tilings and patterns, W.H. Freeman, New York,
  5. Hann, M.A. and Thomas, B.G. (2007). Beyond black and white: a note concerning three-colour-counterchange patterns, J. Textile Inst., 98(6), 539-547,
  6. Wieting, T.W. (1982). The mathematical theory of chromatic plane ornaments, Marcel Dekker, New York,
  7. Wittke O. and Garrido J. (1959). Symétrie des polyèdres polychromatiques, Bull. Soc. française de Minéral. et de Crist., 82(7-9), 223-230;
  8. Niggli, A. and Wondratschek, H. (1960). Eine Verallgemeinerung der Punktgruppen. I. Die einfachen Kryptosymmetrien, Z. Krist., 114(1-6), 215-231
  9. van der Waerden, B.L. and Burkhardt, J.J. (1961). Farbgruppen, Z. Krist, 115, 231-234,
  10. Senechal, M. (1990). Geometrical crystallography in Historical atlas of crystallography ed. Lima-de-Faria, J., Kluwer, Dordrecht, 52-53,
  11. Senechal, M. (1988). Color symmetry, Comput. Math. Applic., 16(5-8), 545-553,
  12. Senechal, M. (1990). Crystalline symmetries: an informal mathematical introduction, Adam Hilger, Bristol, 74-87,
  13. Senechal, M. (1983). Color symmetry and colored polyhedra, Acta Crystallogr., A39, 505-511,
  14. Coxeter, H.S.M. (1987). A simple introduction to colored symmetry, Int. J. Quantum Chemistry, 31, 455-461,
  15. Belov, N.V. and Tarkhova, T.N. (1956). Colour symmetry groups, Sov. Phys. Cryst., 1, 5-11
  16. Belov, N.V. and Tarkhova, T.N. (1956). Colour symmetry groups, Sov. Phys. Cryst., 1, 487-488
  17. Belov, N.V. (1956). Moorish patterns of the Middle Ages and the symmetry groups, Sov. Phys. Cryst., 1, 482-483
  18. Belov, N.V. (1956). Three-dimensional mosaics with colored symmetry, Sov. Phys. Cryst., 1, 489-492
  19. Belov, N.V. and Belova, E.N. (1956). Mosaics for the 46 plane (Shubnikov) groups of anti-symmetry and for the 15 (Fedorov) colour groups, Sov. Phys. Cryst., 2, 16-18
  20. Belov, N.V., Belova, E.N. and Tarkhova, T.N. (1959). More about the colour symmetry groups, Sov. Phys. Cryst., 3, 625-626
  21. Vainshtein, B.K. and Koptsik, V.A. (1994). Modern crystallography. Volume 1. Fundamentals of crystals: symmetry, and methods of structural crystallography, Springer, Berlin, 158-179,
  22. Mackay, A.L. (1957). Extensions of space-group theory, Acta Crystallogr. 10, 543-548,
  23. Koptsik, V.A. (1968). A general sketch of the development of the theory of symmetry and its applications in physical crystallography over the last 50 years, Sov. Phys. Cryst., 12(5), 667-683
  24. Schwarzenberger, R.L.E. (1984). Colour symmetry, Bull. London Math. Soc., 16, 209-240,,,
  25. Thomas, B.G. (2012). Colour symmetry: the systematic coloration of patterns and tilings in Colour Design, ed. Best, J., Woodhead Publishing, 381-432,
  26. MacGillavry, C.H. (1976). Symmetry aspects of M. C. Escher's periodic drawings, International Union of Crystallography, Utrecht,
  27. Schnattschneider, D. (2004). , Harry. N. Abrams, New York,
  28. Shubnikov, A.V., Belov, N.V. et. al. (1964). Colored symmetry, ed. W.T. Holser, Pergamon, New York
  29. Loeb, A.L. (1971). Color and Symmetry, Wiley, New York,
  30. Shubnikov, A.V. and Koptsik, V.A. (1974). Symmetry in science and art, Plenum Press, New York, (original in Russian published by Nauka, Moscow, 1972)
  31. Senechal, M. (1983). Coloring symmetrical objects symmetrically, Math. Magazine, 56(1), 3-16,
  32. Cromwell, P.R. (1997). Polyhedra, Cambridge University Press, 327-348,
  33. Washburn, D.K. and Crowe, D.W. (1988). , Washington University Press, Seattle,
  34. Makovicky, E. (2016). Symmetry through the eyes of old masters, de Gruyter, Berlin, 133-147,
  35. Lifshitz, R. (1997). Theory of color symmetry for periodic and quasiperiodic crystals, Rev. Mod. Phys., 69(4), 1181–1218,
  36. Conway, J.H., Burgeil, H. and Goodman-Strauss, C. (2008). The symmetries of things, A.K. Peters, Wellesley, MA,
  37. Jarratt, J.D. and Schwarzenberger, R.L.E. (1980). Coloured plane groups, Acta Crystallogr., A36, 884-888,