Polycatenane Explained

A polycatenane is a chemical substance that, like polymers, is chemically constituted by a large number of units.[1] These units are made up of concatenated rings into a chain-like structure.

It consists of mechanically linked catenane[2] structures, via topological Hopf links, resulting in a higher dimensionality than the repeating unit.[3] [4] They are a class of catenanes where the number of macrocycles is greater than two and as catenanes they belong to the big family of mechanically interlocked molecular architectures (MIMAs).[5] [6] [7]

The characteristic feature of a polycatenane compound, that distinguishes it from other polymers, is the presence of mechanical bonds in addition to covalent bonds.[8] [9] The rings in this chain-like structure can be separated only when high energy is provided to break at least a covalent bond of the macrocycle. [''n'']-Catenanes (for large n), which consist solely of the mechanically interlocked cyclic components, can be viewed as “optimized” polycatenanes. The main difference between poly-[''2'']-catenanes and poly-[''n'']-catenanes is the repeating unit, as a monomer is for the polymer.[10] In the first case the monomer is made of two interlocked rings that repeat continuously in the final polycatenane, while in the latter case there is only one ring that repeat the interlocking process for a large number of times. If the rings of the polycatenane are all of the same type, it can be defined as a homocatenane while if the subunits are different it is defined as heterocatenane.

As a chain, the degree of motion of these structures is very high, greater than the one of a usual polymer, because the rings possess a reciprocal rotational, elongational and rocking motion. This flexibility is retained even if the macrocycles themselves are very rigid units, because the mobility is given by the ability of the rings to move with respect to each other. This mobility influences the final properties of the material (mechanical, rheological and thermal), and provides a dynamic behavior.[11]

Classification

Depending on the location of the catenane structures in the polymer chain, the polycatenanes can be divided into main-chain polycatenanes and side-chain polycatenanes.[12]

Main-chain polycatenanes are linear catenanes in which the rings are interlocked with one another in a large number of units. They can also be a series of oligomers linked physically even if not interlocked together. The stability of the structure is not only given by mechanical bonds but also hydrogen bonds and π-π interactions between the rings.

On the other hand, the Side-Chain Polycatenanes, are polycatenanes with ramifications where more oligomers are connected on the same cycle with respect to the main backbone. This type of catenane is synthesised functionalizing the macrocycles so that there is a directionality with the possibility to control the ramification.

There are other types of polycatenanes like the ones based on cyclic polymers, where the macrocyles are interlocked to the cyclic polymers, or the polycatenane networks, when catenanes are interlocked to each other into a net.[13] [14]

Catenated nanocages

The basic unit of the polycatenane can differ from the relatively simple organic macrocycle. When organic and inorganic building blocks come together can form a coordination cages (or macromolecular cages) that can interlock one another to form a polycatenane structure.[15] The mechanism is still unexplored but generally the subunits self-assemble into a 0D cage and, in a concerted process, they interlock together into a linear or more intricate catenane structure.[16] [17] [18] [19] [20] [21] Sometimes the catenated cages structure is more stable with respect to the monomeric cage state, and it can be formed passing through a favored reaction intermediate.[22] The synthesis can follow a statistical or a directed routes, forming more or less product, but there are some cases when post-synthetic modifications can increase the product yields.[23] [24] Catenated cages can be applied in a wide range of application due to the high presence of voids.[25] [26] [27]

Synthesis and applications

Synthesis

The synthesis of polycatenanes is considered a very challenging task with most of the reported examples being in the solution state and very few in the solid-state.[28] The formation of poly-[''2'']-catenanes can be achieved by polymerization of functionalized [''2'']-catenanes.[29] Also the synthesis of [''3'']-catenanes, [''5'']-catenanes, [''6'']-catenanes and [''7'']-catenanes is reported in many articles.[30] [31] The synthesis of poly-[''n'']-catenanes has instead some practical issues.[32] [33] To this purpose, molecular dynamic simulation is very used as a tool for the design of the optimal synthetic path toward the desired product by predicting the final topology.[34]

There are two main synthetic routes: the Statistical approach and the Template-Directed approach.[35]

The statistical approach is based on a stochastic methodology.[36] [37] When the reactants are together, there is a probability that they will fit together first and then close on top of each other in a process of cyclization. The catenation of two rings into a catenane is already complex, thus, as expected, the interlocking of multiple cycles into a polycatenane is statistically improbable. Being an unfavored entropically process the product is obtained in very small amount. Also, the cyclization process requires high dilutions, but the elongation of the chain is favored at high concentrations, making the synthesis even more difficult.The Template directed approach is based on the host-guest interactions that can direct the cyclization of pre-organized linear unit upon the existing macrocycle.[29] These interactions can be hydrogen bonds, π-π interactions, hydrophobic interactions or metal ions coordinations. In this way the synthesis can be enthalpy-driven, obtaining quantitative results.

The yield and selectivity are restrained by the kinetic or thermodynamic control of the reaction.[38]

Generally the kinetic control induces the formation of a product after short reaction times because it is favoued by irreversible reactions (or equilibrium reaction moved very much toward the formation of the products).[23] The thermodynamic product is obtained for longer reaction times for reversible processes.[39] In this case the units have the time to rearrange themselves toward the most stable state, in a sort of error-checking process. This is obtained by breaking covalent and coordination bonds and forming the most stable ones.[40]

Applications

Given that polycatenanes are a relatively recent field of study, the properties of these materials are not yet fully explored and understood.[41] The type of bonds that characterize the whole structure (covalent, non covalent or mechanical bonds), the degree of mobility of the chain, the interactions between different chains and the fraction of voids of the catenanes are all factors that contribute to the final properties. As they can be strictly related to the family of Metal Organic Frameworks, the catenanes share all the potential applications of this class of compunds. Among these, there are applications in biomedicine, catalysis, as conducting bridges or in electronic devices, sensing or in very recent and rising fields like molecular machines.[42] [43] [44] [45] [46] [47] [48]

See also

Further reading

External links

Notes and References

  1. Z.Niu and Harry.W. Gibson . Polycatenanes . 2009 . . 109 . 11 . 6024–6046 . 10.1021/cr900002h. 19670889 .
  2. Gil-Ramírez . Guzmán . Leigh . David A. . Stephens . Alexander J. . 2015-05-07 . Catenanes: Fifty Years of Molecular Links . Angewandte Chemie International Edition . 54 . 21 . 6110–6150 . 10.1002/anie.201411619 . 25951013 . 4515087 . 1433-7851.
  3. Book: Flapan, Erica . When Topology Meets Chemistry: A Topological Look at Molecular Chirality . 2000 . Cambridge University Press . 978-0-521-66254-3 . Outlooks . Cambridge . 10.1017/cbo9780511626272.
  4. Carlucci . Lucia . Ciani . Gianfranco . Proserpio . Davide M. . November 2003 . Polycatenation, polythreading and polyknotting in coordination network chemistry . Coordination Chemistry Reviews . 246 . 1–2 . 247–289 . 10.1016/s0010-8545(03)00126-7 . 0010-8545.
  5. Book: Davis . Frank . Macrocycles: construction, chemistry, and nanotechnology applications . Higson . Séamus . 2011 . Wiley . 978-1-119-98993-6 . Chichester.
  6. Fang . Lei . Olson . Mark A. . Benítez . Diego . Tkatchouk . Ekaterina . Goddard III . William A. . Stoddart . J. Fraser . 2010 . Mechanically bonded macromolecules . Chem. Soc. Rev. . en . 39 . 1 . 17–29 . 10.1039/B917901A . 0306-0012 . 20023833.
  7. Amabilino . David B. . Stoddart . J. Fraser . December 1995 . Interlocked and Intertwined Structures and Superstructures . Chemical Reviews . 95 . 8 . 2725–2828 . 10.1021/cr00040a005 . 0009-2665.
  8. Stoddart . J. Fraser . 2009 . The chemistry of the mechanical bond . Chemical Society Reviews . en . 38 . 6 . 1802–1820 . 10.1039/b819333a . 0306-0012 . 19587969.
  9. Book: Bruns . Carson J. . The nature of the mechanical bond: from molecules to machines . Stoddart . J. F. . Stoddart . James Fraser . 2017 . John Wiley & Sons . 978-1-119-04400-0 . Hoboken, New Jersey.
  10. Xing . Hao . Li . Zhandong . Wang . Wenbo . Liu . Peiren . Liu . Junkai . Song . Yu . Wu . Zi Liang . Zhang . Wenke . Huang . Feihe . February 2020 . Mechanochemistry of an Interlocked Poly[2]catenane: From Single Molecule to Bulk Gel . CCS Chemistry . 2 . 1 . 513–523 . 10.31635/ccschem.019.20190043 . 219164409 . 2096-5745. free .
  11. Rauscher . Phillip M. . Schweizer . Kenneth S. . Rowan . Stuart J. . de Pablo . Juan J. . 2020-06-07 . Dynamics of poly[n ]catenane melts ]. The Journal of Chemical Physics . en . 152 . 21 . 214901 . 2020JChPh.152u4901R . 10.1063/5.0007573 . 0021-9606 . 32505155 . 219537697. free .
  12. Book: Encyclopedia of polymeric nanomaterials. Vol. 3: Pm - Z . 2015 . Springer-Reference . 978-3-642-29647-5 . Heidelberg Berlin . 1796–1802.
  13. Semlyen . J. A. . Wood . B. R. . Hodge . P. . September 1994 . Cyclic polymers: past, present and future . Polymers for Advanced Technologies . 5 . 9 . 473–478 . 10.1002/pat.1994.220050902.
  14. Hart . Laura F. . Lenart . William R. . Hertzog . Jerald E. . Oh . Jongwon . Turner . Wilson R. . Dennis . Joseph M. . Rowan . Stuart J. . 2023-06-07 . Doubly Threaded Slide-Ring Polycatenane Networks . Journal of the American Chemical Society . en . 145 . 22 . 12315–12323 . 10.1021/jacs.3c02837 . 0002-7863 . 37227296 . 258888690.
  15. Frank . Marina . Johnstone . Mark D. . Clever . Guido H. . 2016-09-26 . Interpenetrated Cage Structures . Chemistry - A European Journal . en . 22 . 40 . 14104–14125 . 10.1002/chem.201601752 . 27417259.
  16. Constable . Edwin C. . Zhang . Guoqi . Housecroft . Catherine E. . Zampese . Jennifer A. . 2011 . Zinc(ii) coordination polymers, metallohexacycles and metallocapsules—do we understand self-assembly in metallosupramolecular chemistry: algorithms or serendipity? . CrystEngComm . 13 . 22 . 6864 . 10.1039/c1ce05884c . 1466-8033.
  17. Westcott . Aleema . Fisher . Julie . Harding . Lindsay P. . Rizkallah . Pierre . Hardie . Michaele J. . 2008-02-16 . Self-Assembly of a 3-D Triply Interlocked Chiral [2]Catenane ]. Journal of the American Chemical Society . 130 . 10 . 2950–2951 . 10.1021/ja8002149 . 0002-7863 . 18278922.
  18. Kuang . Xiaofei . Wu . Xiaoyuan . Yu . Rongmin . Donahue . James P. . Huang . Jinshun . Lu . Can-Zhong . 2010-04-11 . Assembly of a metal–organic framework by sextuple intercatenation of discrete adamantane-like cages . Nature Chemistry . 2 . 6 . 461–465 . 2010NatCh...2..461K . 10.1038/nchem.618 . 1755-4330 . 20489714.
  19. Heine . Johanna . Schmedt auf der Günne . Jörn . Dehnen . Stefanie . 2011-07-06 . Formation of a Strandlike Polycatenane of Icosahedral Cages for Reversible One-Dimensional Encapsulation of Guests . Journal of the American Chemical Society . en . 133 . 26 . 10018–10021 . 10.1021/ja2030273 . 0002-7863 . 21657228.
  20. Torresi . Stefano . Famulari . Antonino . Martí-Rujas . Javier . 2020-05-20 . Kinetically Controlled Fast Crystallization of M 12 L 8 Poly-[n ]-catenanes Using the 2,4,6-Tris(4-pyridyl)benzene Ligand and ZnCl 2 in an Aromatic Environment ]. Journal of the American Chemical Society . en . 142 . 20 . 9537–9543 . 10.1021/jacs.0c03319 . 32343571 . 216646315 . 0002-7863.
  21. Marti-Rujas, J.; Famulari, A. . 2024 . Polycatenanes Formed of Self-Assembled Metal Organic Cages . Angewandte Chemie International Edition.
  22. Xu . Shijun . Li . Pan . Li . Zi-Ying . Yu . Chunyang . Liu . Xiaoyun . Liu . Zhiqiang . Zhang . Shaodong . July 2021 . Catenated Cages Mediated by Enthalpic Reaction Intermediates . CCS Chemistry . 3 . 7 . 1838–1850 . 10.31635/ccschem.020.202000360 . 2096-5745 . 224904423. free .
  23. Wu . Yong . Guo . Qing-Hui . Qiu . Yunyan . Weber . Jacob A. . Young . Ryan M. . Bancroft . Laura . Jiao . Yang . Chen . Hongliang . Song . Bo . Liu . Wenqi . Feng . Yuanning . Zhao . Xingang . Li . Xuesong . Zhang . Long . Chen . Xiao-Yang . 2022-03-22 . Syntheses of three-dimensional catenanes under kinetic control . Proceedings of the National Academy of Sciences . en . 119 . 12 . e2118573119 . 2022PNAS..11918573W . 10.1073/pnas.2118573119 . 0027-8424 . 8944772 . 35290119.
  24. Li . Pan . Xu . Shijun . Yu . Chunyang . Li . Zi‐Ying . Xu . Jianping . Li . Zi‐Mu . Zou . Lingyi . Leng . Xuebing . Gao . Shan . Liu . Zhiqiang . Liu . Xiaoyun . Zhang . Shaodong . 2020-04-27 . De Novo Construction of Catenanes with Dissymmetric Cages by Space‐Discriminative Post‐Assembly Modification . Angewandte Chemie International Edition . en . 59 . 18 . 7113–7121 . 10.1002/anie.202000442 . 32003925 . 1433-7851 . 210982600.
  25. Cheng . Liwei . Liang . Chengyu . Liu . Wei . Wang . Yaxing . Chen . Bin . Zhang . Hailong . Wang . Yanlong . Chai . Zhifang . Wang . Shuao . 2020-09-03 . Three-Dimensional Polycatenation of a Uranium-Based Metal–Organic Cage: Structural Complexity and Radiation Detection . Journal of the American Chemical Society . 142 . 38 . 16218–16222 . 10.1021/jacs.0c08117 . 0002-7863 . 32881493 . 221496523.
  26. Marti-Rujas . Javier . Elli . Stefano . Famulari . Antonino . Kinetic trapping of 2,4,6-tris(4-pyridyl)benzene and ZnI2 into M12L8 poly-[n]-catenanes using solution and solid-state processes ]. Scientific Reports . 13 . 5605 (2023).
  27. Marti-Rujas, J. . 2023 . Connecting metal–organic cages (MOCs) for CO2 remediation . Material Advances . 4 . 4333-4343.
  28. Marti-Rujas, J.; Elli, S.; Sacchetti, A.; Castiglione, F. . 2022 . Mechanochemical synthesis of mechanical bonds in M12L8 poly-[n]-catenanes ]. Dalton Transactions . 51 . 53-58.
  29. Li . Ziyong . Liu . Wenju . Wu . Jishan . Liu . Sheng Hua . Yin . Jun . 2012-08-17 . Synthesis of [2]Catenanes by Template-Directed Clipping Approach ]. The Journal of Organic Chemistry . en . 77 . 16 . 7129–7135 . 10.1021/jo3012804 . 0022-3263 . 22839768.
  30. Fujita . Makoto . Ogura . Katsuyuki . March 1996 . Self-assembling [2]catenanes: molecular magic rings . Supramolecular Science . 3 . 1–3 . 37–44 . 10.1016/0968-5677(96)00004-1 . 0968-5677. free .
  31. Amabilino . David B. . Ashton . Peter R. . Balzani . Vincenzo . Boyd . Sue E. . Credi . Alberto . Lee . Ju Young . Menzer . Stephan . Stoddart . J. Fraser . Venturi . Margherita . Williams . David J. . 1998-04-28 . Oligocatenanes Made to Order1 . Journal of the American Chemical Society . 120 . 18 . 4295–4307 . 10.1021/ja9720873 . 0002-7863.
  32. Clarkson . Guy J . Leigh . David A . Smith . Richard A . 1998-12-01 . From catenanes to mechanically-linked polymers . Current Opinion in Solid State and Materials Science . en . 3 . 6 . 579–584 . 10.1016/S1359-0286(98)80029-6 . 1998COSSM...3..579C . 1359-0286.
  33. Liu . Guancen . Rauscher . Phillip M. . Rawe . Benjamin W. . Tranquilli . Marissa M. . Rowan . Stuart J. . 2022 . Polycatenanes: synthesis, characterization, and physical understanding . Chemical Society Reviews . en . 51 . 12 . 4928–4948 . 10.1039/D2CS00256F . 35611843 . 249045606 . 0306-0012.
  34. Lei . Huanqing . Zhang . Jianguo . Wang . Liming . Zhang . Guojie . 2021-01-06 . Dimensional and shape properties of a single linear polycatenane: Effect of catenation topology . Polymer . en . 212 . 123160 . 10.1016/j.polymer.2020.123160 . 0032-3861 . 228825803.
  35. Raymo . Françisco M. . Stoddart . J. Fraser . 1999-06-11 . Interlocked Macromolecules . Chemical Reviews . 99 . 7 . 1643–1664 . 10.1021/cr970081q . 0009-2665 . 11849006.
  36. Agam . Giora . Zilkha . Albert . August 1976 . Synthesis of a catenane by a statistical double-stage method . Journal of the American Chemical Society . en . 98 . 17 . 5214–5216 . 10.1021/ja00433a027 . 0002-7863.
  37. Harrison . I. T. . 1972 . The effect of ring size on threading reactions of macrocycles . Journal of the Chemical Society, Chemical Communications . en . 4 . 231–232 . 10.1039/c39720000231 . 0022-4936.
  38. Dichtel . William R. . Miljanić . Ognjen Š. . Zhang . Wenyu . Spruell . Jason M. . Patel . Kaushik . Aprahamian . Ivan . Heath . James R. . Stoddart . J. Fraser . 2008-12-16 . Kinetic and Thermodynamic Approaches for the Efficient Formation of Mechanical Bonds . Accounts of Chemical Research . en . 41 . 12 . 1750–1761 . 10.1021/ar800067h . 0001-4842 . 18837521.
  39. Olson . Mark A. . Coskun . Ali . Fang . Lei . Basuray . Ashish N. . Stoddart . J. Fraser . 2010-04-19 . Polycatenation under Thermodynamic Control . Angewandte Chemie . 122 . 18 . 3219–3224 . 2010AngCh.122.3219O . 10.1002/ange.201000421 . 0044-8249.
  40. Sartori . Pablo . Pigolotti . Simone . 2015-12-10 . Thermodynamics of Error Correction . Physical Review X . 5 . 4 . 041039 . 1504.06407 . 2015PhRvX...5d1039S . 10.1103/PhysRevX.5.041039 . 14086928.
  41. Hart . Laura F. . Hertzog . Jerald E. . Rauscher . Phillip M. . Rawe . Benjamin W. . Tranquilli . Marissa M. . Rowan . Stuart J. . 2021-02-12 . Material properties and applications of mechanically interlocked polymers . Nature Reviews Materials . 6 . 6 . 508–530 . 10.1038/s41578-021-00278-z . 2021NatRM...6..508H . 1812714 . 231905660 . 2058-8437.
  42. Riebe . Jan . Niemeyer . Jochen . 2021-10-07 . Mechanically Interlocked Molecules for Biomedical Applications . European Journal of Organic Chemistry . en . 2021 . 37 . 5106–5116 . 10.1002/ejoc.202100749 . 1434-193X . 238738743. free .
  43. van Dongen . Stijn F. M. . Cantekin . Seda . Elemans . Johannes A. A. W. . Rowan . Alan E. . Nolte . Roeland J. M. . 2014 . Functional interlocked systems . Chem. Soc. Rev. . 43 . 1 . 99–122 . 10.1039/c3cs60178a . 0306-0012 . 24071686 . 11174780. 2066/128395 . free .
  44. Langton . Matthew J. . Beer . Paul D. . 2014-04-07 . Rotaxane and Catenane Host Structures for Sensing Charged Guest Species . Accounts of Chemical Research . 47 . 7 . 1935–1949 . 10.1021/ar500012a . 0001-4842 . 24708030.
  45. Evans . Nicholas H. . Beer . Paul D. . 2014 . Progress in the synthesis and exploitation of catenanes since the Millennium . Chemical Society Reviews . en . 43 . 13 . 4658–4683 . 10.1039/c4cs00029c . 0306-0012 . 24676138.
  46. Chen . Hongliang . Fraser Stoddart . J. . September 2021 . From molecular to supramolecular electronics . Nature Reviews Materials . en . 6 . 9 . 804–828 . 2021NatRM...6..804C . 10.1038/s41578-021-00302-2 . 2058-8437 . 232766622.
  47. Caballero . Antonio . Zapata . Fabiola . Beer . Paul D. . September 2013 . Interlocked host molecules for anion recognition and sensing . Coordination Chemistry Reviews . 257 . 17–18 . 2434–2455 . 10.1016/j.ccr.2013.01.016 . 0010-8545.
  48. Aprahamian . Ivan . 2020-03-03 . The Future of Molecular Machines . ACS Central Science . 6 . 3 . 347–358 . 10.1021/acscentsci.0c00064 . 2374-7943 . 32232135 . 7099591 . 214703064.