In functional analysis and related areas of mathematics a polar topology, topology of
l{G}
l{G}
See main article: Dual system.
A pairing is a triple
(X,Y,b)
K
b:X x Y\toK.
(X,Y,b)
Y
X
x\inX,
y\inY
b(x,y) ≠ 0,
X
Y
y\inY,
x\inX
b(x,y) ≠ 0.
See main article: Polar set.
The polar or absolute polar of a subset
A\subseteqX
A\circ:=\left\{y\inY:\supx|b(x,y)|\leq1\right\}.
Dually, the polar or absolute polar of a subset
B\subseteqY
B\circ,
B\circ:=\left\{x\inX:\supy|b(x,y)|\leq1\right\}.
In this case, the absolute polar of a subset
B\subseteqY
B
{}\circB.
The polar is a convex balanced set containing the origin.
If
A\subseteqX
A,
A\circ,
A\circ={}\circ(A\circ).
B\subseteqY
B
B\circ=\left({}\circB\right)\circ.
Suppose that
(X,Y,b)
K.
Notation: For all
x\inX,
b(x,\bull):Y\toK
Y
y\mapstob(x,y)
b(X,\bull)=\left\{b(x,\bull)~:~x\inX\right\}.
Similarly, for all
y\inY,
b(\bull,y):X\toK
x\mapstob(x,y)
b(\bull,Y)=\left\{b(\bull,y)~:~y\inY\right\}.
The weak topology on
X
Y
b
X,
\sigma(X,Y,b)
\sigma(X,Y),
b(\bull,y):X\toK
y
Y.
Y
X
b
\sigma(Y,X,b)
\sigma(Y,X)
Y
b(x,\bull):Y\toK
x
X.
It is because of the following theorem that it is almost always assumed that the family
l{G}
\sigma(X,Y,b)
X.
Every pairing
(X,Y,b)
(Y,X,\hat{b})
\hat{b}(y,x)=b(x,y).
There is a repeating theme in duality theory, which is that any definition for a pairing
(X,Y,b)
(Y,X,\hat{b}).
Convention and Definition: Given any definition for a pairing
(X,Y,b),
(Y,X,\hat{b}).
X
Y
\sigma(X,Y)
X
Y
X
Y,
(Y,X,\hat{b})
\sigma(Y,X)
Y
X
For instance, after defining "
X
Y
S
Y
Y
X
S
X
\sigma(X,Y)
\sigma(Y,X)
Convention: Adhering to common practice, unless clarity is needed, whenever a definition (or result) is given for a pairing
(X,Y,b)
In particular, although this article will only define the general notion of polar topologies on
Y
l{G}
\sigma(X,Y)
X,
X
l{G}
\sigma(Y,X)
Y.
(X,Y)
(Y,X)
Although it is technically incorrect and an abuse of notation, the following convention is nearly ubiquitous:
Convention: This article will use the common practice of treating a pairing
(X,Y,b)
\left(Y,X,\hat{b}\right)
\left(Y,X,\hat{b}\right)
(Y,X,b).
Throughout,
(X,Y,b)
K
l{G}
\sigma(X,Y,b)
X.
For every
G\inl{G}
r>0,
rG\circ=r\left(G\circ\right)
G
\sigma(X,Y,b)
rG\circ
Y.
The polar topology on
Y
l{G}
b
l{G}
Y
l{G},
Y
\left\{rG\circ~:~G\inl{G},r>0\right\}
forms a neighbourhood subbasis at the origin. When
Y
l{G}
Yl{G
If
\left(ri\right)
infty | |
i=1 |
0
0
\left\{riG\circ~:~G\inl{G},i=1,2,\ldots\right\}
without changing the resulting topology.
When
l{G}
G,H\inl{G},
K\not\inl{G}
G\cupH\subseteqK
0.
Every
G\inl{G}
pG:Y\toR
pG(y)=\supg|b(g,y)|=\sup|b(G,y)|
where
G\circ=\left\{y\inY:pG(y)\leq1\right\}
pG
G\circ.
l{G}
Y
l{G}
If every positive scalar multiple of a set in
l{G}
l{G}
\left\{G\circ:G\inl{G}\right\}
without changing the resulting topology.
The following theorem gives ways in which
l{G}
l{G}
Y.
It is because of this theorem that many authors often require that
l{G}
A,B\inl{G}
C\inl{G}
G\inl{G}
l{G}.
Some authors further assume that every
x\inX
G\inl{G}
l{G}
If
\left(yi\right)i
Y
\left(yi\right)i\to0
l{G}
Y
G\inl{G},
pG(yi)=\supg|b(g,yi)|\to0,
G\inl{G},
(b(\bull,yi))i
X
0
G
i\inI,
b(\bull,yi)
x\mapstob(x,yi).
If
y\inY
\left(yi\right)i\toy
l{G}
Y
G\inl{G},
pG\left(yi-y\right)=\sup\left|b\left(G,yi-y\right)\right|\to0.
l{F}
Y
y\inY
l{G}
Y
l{F}
y
G\inl{G}.
The results in the article Topologies on spaces of linear maps can be applied to polar topologies.
Throughout,
(X,Y,b)
K
l{G}
\sigma(X,Y,b)
X.
We say that
l{G}
X
X
l{G}.
We say that
l{G}
X
cup\nolimitsG
X.
Proof of (2): If
Y=\{0\}
l{G}
Y
\{0\}
Y.
y\inY
f:X\toK
f(x)=b(x,y)
x\inX,
V=\left\{s\inK:|s|>1\right\}.
Since
X
Y,
x\inX
f(x) ≠ 0
f
|f(x)|>1.
U=f-1(V)
\sigma(X,Y,b)
X
x
cup\nolimitsG
\sigma(X,Y,b)
X
G\inl{G}
g\inG
g\inU.
g\inU,
|b(g,y)|>1
y\not\inG\circ,
G\circ
l{G}
Y.
Throughout,
(X,Y,b)
K
l{G}
\sigma(X,Y,b)
X.
The following table will omit mention of
b.
c(X,Y,b)
\sigma(X,Y,b)
\sigma(X,Y,b)
Notation: If
\Delta(Y,X,b)
Y
Y
Y\Delta(Y,,
Y\Delta(Y,
Y\Delta.
\sigma(X,Y,b)
\Delta(Y,X,b)=\sigma
Y\sigma(Y,,
Y\sigma(Y,
Y\sigma
Y
\sigma(X,Y,b).
l{G}\subseteq\wp(X) ("topology of uniform convergence on ...") | Notation | Name ("topology of...") | Alternative name | |
---|---|---|---|---|
finite subsets of X (or \sigma(X,Y,b) X | \sigma(X,Y,b) s(X,Y,b) | pointwise/simple convergence | weak/weak* topology | |
\sigma(X,Y,b) | \tau(X,Y,b) | Mackey topology | ||
\sigma(X,Y,b) | \gamma(X,Y,b) | compact convex convergence | ||
\sigma(X,Y,b) (or balanced \sigma(X,Y,b) | c(X,Y,b) | compact convergence | ||
\sigma(X,Y,b) | convex balanced complete bounded convergence | |||
\sigma(X,Y,b) (or balanced \sigma(X,Y,b) | precompact convergence | |||
\sigma(X,Y,b) | convex balanced infracomplete bounded convergence | |||
\sigma(X,Y,b) | b(X,Y,b) \beta(X,Y,b) | bounded convergence | strong topology Strongest polar topology |
For any
x\inX,
\sigma(Y,X,b)
x
X
\left\{z\inX:|b(z-x,yi)|\leqrforalli\right\}
for some real
r>0
y1,\ldots,yn
Y.
The continuous dual space of
(Y,\sigma(Y,X,b))
X,
f
Y
x\inX
f(y)=b(x,y)
y\inY.
Y
In general, the convex balanced hull of a
\sigma(Y,X,b)
Y
\sigma(Y,X,b)
If
X
Y
b
XR
Y\R
\R.
\operatorname{Re}b
b
\left(XR,YR,\operatorname{Re}b\right)
\sigma(Y,X,b)
Y
\sigma\left(XR,YR,\operatorname{Re}b\right).
f
Y
r:=\operatorname{Re}f.
f=r(y)-ir(iy)
y\inY.
The continuous dual space of
(Y,\tau(Y,X,b))
X
Y
Since in general, the convex balanced hull of a
\sigma(Y,X,b)
Y
\sigma(Y,X,b)
c(X,Y,b).
\sigma(Y,X,b)
\sigma(Y,X,b)
b(X,Y,b).
A neighborhood basis (not just a subbasis) at the origin for the
\beta(Y,X,b)
\left\{A\circ~:~A\subseteqXisa\sigma(X,Y,b)-boundedsubsetofX\right\}.
The strong topology
\beta(Y,X,b)
Throughout this section,
X
X'
(X,X',\langle\bull,\bull\rangle)
\langlex,x'\rangle=x'(x).
X
X'
X'
X
X
(X,X',\langle\bull,\bull\rangle)
X
X'
X
(X,X',\langle\bull,\bull\rangle)
cupG
X
X
\left(X'l{G
x\inX
X'.
x'\inX'\mapsto\langlex',x\rangle,
X'l{G
X'
X
X
\left(X'l{G
u:E\toF
l{G}
l{H}
X
Y,
l{G}1
l{G}2.
u,
{}tu:Y'l{H
G\inl{G}
H\inl{H}
u(G)\subseteqH.
u
X'
\sigma(X',X)
\gamma(X',X),
c(X',X),
b(X',X)
Y'
\sigma(Y',Y)
\gamma(Y',Y),
c(Y',Y),
b(Y',Y)
X
K
l{G}
X
l{G}1
l{G}2
X x X'l{G
(x,x')\mapsto\langlex',x\rangle=x'(x)
X
l{G}
X'
b(X',X).
X
l{G}
X
l{G}1
l{G}2.
l{G}
X
X'l{G
Throughout,
X
K
X'
X
X'
X'.
Notation: If
\Delta(X',Z)
X'
X'\Delta(X',
\tau(X',X'')
\Delta=\tau
Z=X''
X'\tau(X',
X'
\tau(X',X'')
Z=X
X'\Delta
X'\sigma:=X'\sigma(X',
l{G}\subseteq\wp(X) ("topology of uniform convergence on ...") | Notation | Name ("topology of...") | Alternative name | |
---|---|---|---|---|
finite subsets of X (or \sigma(X',X) X | \sigma(X',X) s(X',X) | pointwise/simple convergence | weak/weak* topology | |
compact convex subsets | \gamma(X',X) | compact convex convergence | ||
compact subsets (or balanced compact subsets) | c(X',X) | compact convergence | ||
\sigma(X',X) | \tau(X',X) | Mackey topology | ||
precompact/totally bounded subsets (or balanced precompact subsets) | precompact convergence | |||
complete and bounded disks | convex balanced complete bounded convergence | |||
infracomplete and bounded disks | convex balanced infracomplete bounded convergence | |||
bounded subsets | b(X',X) \beta(X',X) | bounded convergence | strong topology | |
\sigma(X'',X') X'':=\left(X'b\right)' | \tau(X',X'') | Mackey topology |
The reason why some of the above collections (in the same row) induce the same polar topologies is due to some basic results. A closed subset of a complete TVS is complete and that a complete subset of a Hausdorff and complete TVS is closed. Furthermore, in every TVS, compact subsets are complete and the balanced hull of a compact (resp. totally bounded) subset is again compact (resp. totally bounded). Also, a Banach space can be complete without being weakly complete.
If
B\subseteqX
B\circ
X'
B\circ
X'
X
B\circ
X'
B
X.
S\subseteqX
S\circ
X'.
X.
The
\sigma(X',X)
X'
\sigma(X',X).
\sigma(X',X)
X'
\sigma(X',X)
X
Y
u:X\toY
u
u,
{}tu:Y'\toX',
{}tu
X'\sigma(X',.
X
Y
Z
u:X'\sigma x Y'\sigma\toZ'\sigma
u:X'b x Y'b\toZ'b
X'\sigma(X',
X
X
\sigma(X',X)
X'
b(X',X).
X
\hat{X}
X ≠ \hat{X}
\sigma(X',\hat{X})
\sigma(X',X).
\sigma(X',X)
X
H\subseteqX'
\sigma(X',X)
B
X
H\subseteqB\circ.
If
X
\gamma\left(X',X\right)=c\left(X',X\right).
If
X
c(X',X)
Suppose that
X
W'\subseteqX'.
W'
X'
W'
c(X',X).
An equicontinuous subset
K\subseteqX'
K
\sigma(X',X)
See main article: Mackey topology.
By letting
l{G}
X,
X'
X'
\tau(X',X)
X'
X'\tau(X',.
See main article: Strong dual space.
Due to the importance of this topology, the continuous dual space of
X'b
X''.
(X'b)'=X''.
The
b(X',X)
X
l{G}
X'
l{G}
X.
X
X'b(X',
X
X'
\left\|x'\right\|:=\supx\left|\left\langlex',x\right\rangle\right|,
x'\inX'.
X
Xk
k=0,1...
X'b(X',
Xk
X
X'b(X',
X'b(X',
X'b(X',
X'b(X',,
\sigma(X',X)
b(X',X)
X'
See main article: Mackey topology.
By letting
l{G}''
X''=\left(X'b\right)',X'
X'
X''
X''
\tau(X',X'')
X'
X'\tau(X',.
b(X',X)
\tau(X',X).
Throughout,
X
K
X'
X
X'.
X.
Notation: If
\Delta\left(X,X'\right)
X
X
X\Delta\left(X,
X\Delta
\sigma\left(X,X'\right)
\Delta=\sigma
X\sigma(X,X')
X\sigma
X
\sigma\left(X,X'\right)
l{G}\subseteq\wp(X) ("topology of uniform convergence on ...") | Notation | Name ("topology of...") | Alternative name | |
---|---|---|---|---|
finite subsets of X' (or \sigma(X',Y) X' | \sigma\left(X,X'\right) s\left(X,X'\right) | pointwise/simple convergence | weak topology | |
equicontinuous subsets (or equicontinuous disks) (or weak-* compact equicontinuous disks) | \varepsilon(X,X') | equicontinuous convergence | ||
weak-* compact disks | \tau\left(X,X'\right) | Mackey topology | ||
weak-* compact convex subsets | \gamma\left(X,X'\right) | compact convex convergence | ||
weak-* compact subsets (or balanced weak-* compact subsets) | c\left(X,X'\right) | compact convergence | ||
weak-* bounded subsets | b\left(X,X'\right) \beta\left(X,X'\right) | bounded convergence | strong topology |
The closure of an equicontinuous subset of
X'
See main article: Weak topology.
Suppose that
X
Y
X
u:X\toY
u:X\toY
u:\sigma\left(X,X'\right)\to\sigma\left(Y,Y'\right)
u:X\toY
X
Y
u
X
Y
If
l{G}'
X',
If
X
X
X
\varepsilon(X,X').
X
E\subsetX'
E
E\circ
S\subseteqX,
S
S\circ
Importantly, a set of continuous linear functionals
H
X
U
X
H\subseteqU\circ
X'
X
X
X
See main article: Mackey topology.
Suppose that
X
X
X
\tau\left(X,X'\right).
Let
X
Y
X
X.
\tau
X,
\tau
X
Y
X
\tau,
Y
X
\sigma(X,Y)
X\sigma(X,
\sigma(X,Y)
X
Y
X\sigma(X,'=\left(X\sigma(X,\right)'=Y
X
X
Y