Phosphidosilicates Explained

The phosphidosilicates or phosphosilicides are inorganic compounds containing silicon bonded to phosphorus and one or more other kinds of elements. In the phosphosilicates each silicon atom is surrounded by four phosphorus atoms in a tetrahedron. The triphosphosilicates have a SiP3 unit, that can be a planar triangle like carbonate CO3. The phosphorus atoms can be shared to form different patterns e.g. [Si<sub>2</sub>P<sub>6</sub>]10− which forms pairs, and [Si<sub>3</sub>P<sub>7</sub>]3− which contains two-dimensional double layer sheets.[1] [SiP<sub>4</sub>]8− with isolated tetrahedra, and [SiP<sub>2</sub>]2− with a three dimensional network with shared tetrahedron corners.[2] SiP clusters can be joined, not only by sharing a P atom, but also by way of a P-P bond. This does not happen with nitridosilicates or plain silicates.

The phosphidosilicates can be considered as a subclass of the pnictogenidosilicates, where P can be substituted by N (nitridosilicates), As, or Sb. Also Silicon can be substituted to form other series of compounds by replacement with other +4 oxidation state atoms like germanium, tin, titanium or even tantalum.

List

formulanamecrystalsystemspacegroupunit cell ÅformMWdensitypropertiesreferences
Li2SiP2tetragonalI41/acda=12.111 Å, c=18.658 Å, Z=32 V=2732.64 SiP4 tetrahedra are linked together to form a supertetrahedron. Supertetrahedrons are linked together by corner sharing.103.912.02[3]
LiSi2P3I41/aa=18.4757  Å, c=35.0982  Å, Z=100Interpenetrating networks of bridged supertetrahedra
Li3Si3P7monoclinicP21/ma = 6.3356 Å, b = 7.2198 Å, c = 10.6176 Å, β = 102.941°, Z = 2grey
Li5SiP3CubicFmma=5.84 Z=1.33SiP4 tetrahedra, but some Si replace by Li[4]
Li10Si2P6P21/na = 7.2051 Å, b = 6.5808 Å, c = 11.6405 Å, β = 90.580°, Z = 4contains Si2P6 units with two Si atoms linked by two P atomsalso known by Li5SiP3
Li8SiP4lithium orthophosphidosilicatecubicPa3a=11.6784 Z=8 V=1592.76207.491.73orange red
Li14SiP6CubicFmma=5.9393 Z=4SiP4 tetrahedra, but some Si replace by Li1.644[5]
Na19Si13P25triclinicPa =13.3550 Å, b =15.3909 Å, c =15.4609 Å, α =118.05°, β =111.71°, γ =93.05°, Z =2T3 supertetrahedrasodium ion conductor[6]
Na23Si19P33monoclinicC2/ca =28.4985 Å, b =16.3175 Å, c = 13.8732 Å, β =102.35°, Z =4solely T3 supertetrahedrasodium ion conductor
Na23Si28P45monoclinicP21/ca =19.1630 Å, b =23.4038 Å, c = 19.0220 Å, β =104.30°, Z =4T3 and T4 supertetrahedrasodium ion conductor
Na23Si37P57monoclinicC2/ca =34.1017 Å, b =16.5140 Å, c = 19.5764 Å, β =111.53°, Z =4solely T4 supertetrahedrasodium ion conductor
LT-NaSi2P3tetragonalI41/aa =19.5431 Å, c = 34.5317 Å, Z =100fused T4 and T5 supertetrahedrasodium ion conductor
HT-NaSi2P3tetragonalI41/acda =20.8976 Å, c = 40.081 Å, Z =128solely fused T5 supertetrahedrasodium ion conductor
Na2SiP2disodium diphosphidosilicateTetrahedralPccna = 12.7929 Å, b = 22.3109 Å, c = 6.0522 Å and Z = 16edge‐shared SiP4 tetrahedra with 1 width chainsdark red 0.43 eV[7]
Na5SiP3monoclinicP21/cZ=4 a= 7.352 Å, b= 7.957, Å c= 13.164 Å, α=90.757°2.06also known by Na10Si2P6 band gap 1.292 eV[8] [9]
Na3K2SiP3trisodium dipotassium triphosphidosilicateOrthorhombicPnmaa=14.580 b=4.750 c= 13.020 V=901.7 Z=4SiP3 triangles[10]
Na4Ca2SiP4hexagonalP63mca=913 c=617 V=151.5SiP4 tetrahedra2.128[11]
Na4Sr2SiP4hexagonalP63mca=9.283 c=7.295 V=1642.498
Na4Eu2SiP4hexagonalP63mca=9.251 c=7.198 V=160.73.226
MgSiP2tetragonalI2da=5.721 c=10.095orange yellow; semiconductor band gap 2.24 eV; decomposed by water or acid[12]
AlSiP3orthorhombicPmnba = 9.872, b = 5.861, c = 6.088, Z=4P-P bondsblack[13]
K2SiP2orthorhombicIbama = 12.926, b = 6.867, c= 6.107, Z=4, V=542.07one dimensional chain2.061[14]
KSi2P3monoclinicC2/ca=10.1327 Å, b=10.1382 Å, c=21.118 Å, β=96.88°, Z=8 V=2153.8Å3solely fused T3 supertetrahedra2.321dark red, band gap 1.72 eV
KSi2P3tetragonalI41/acda =21.922 Å, c = 39.868 Å, Z =128solely fused T5 supertetrahedrapotassium ion conductor[15] [16]
Ca2Si2P4P41212a = 7.173, c = 26.295band gap 0.984 eV[17]
Ca3Si2P4monoclinica = 7.073 Å, b = 17.210 Å, c = 6.918 Å, β = 111.791°band gap 0.826 eV
Ca3Si8P14monoclinicP21/ca = 12.138 Å, b = 13.476 Å, c = 6.2176 Å, β = 90.934°band gap 0.829 eV
Ca4SiP4cubica=11.875 V=16752.48[18]
MnSiP2tetrahedralI 4 2 da 5.5823 c 10.230metallic; SHG 32.8 pm/V[19]
Fe5SiPa=6.766 c=12.456 V=493.8 Z=66.83[20]
CoSi3P3monoclinicP21(pseudo orthrhombic) a = 5.899, b = 5.703, c = 12.736, β = 90.00° Z=4resistivity 0.62 Ohm cm band gap 0.12 eV
NiSi3P4tetragonalI2ma = 5.1598 c =10.350 Z = 23.22 [21]
NiSi2P3Imm2a = 3.505, b = 11.071, c = 5.307, Z = 2[22]
FeSi4P4a = 4.876, b = 5.545, c = 6.064, α = 85.33°, β = 68.40°, γ = 70.43° Z=4 P and Si random3.38resistivity 0.3 Ohm cm band gap 0.15, can take in Li or Na[23] [24]
Cu4SiP8I41/aa = 12.186, c = 5.732, Z = 8P-P bonds[25]
ZnSiP2TetragonalI2da = 5.399 Å c = 10.435 Å Z=4 V=304.173 Å3chalcopyrite structure SiP4 and Zn4 tetrahedra154.9363.3 (measured)dark red clear; red luminescent; semiconductor; band gap 2.01 eV[26] [27]
ZnSiP2Cubicover 27 GPa Superconductor Tc = 8.2K
Sr2SiP4band gap 1.41 eV[28]
Sr4SiP4cubica=12.426 V=19193.48
SrSi7P10triclinicP1a =6.1521 Å, b =8.0420 Å, c =8.1374 Å, α =106.854°, β =99.020°, γ =105.190°, Z =1tetrahedral network derived from T2 supertetrahedraband gap 1.1 eV[29]
Mg2Sr3Si20P30 hexagonalP63a = 15.7767 c = 11.7407 [30]
MgSr3Si3P7P31ma = 18.7339 c = 6.1393
RhSi3P3monoclinicC2a=5.525, b=7.210, c=5.522 β=118.31°, Z=2 P and Si random4.005black[31]
RuSi4P4triclinicP1a = 4.936, b = 5.634, c = 6.162, α = 85.51°, β = 68.26°, γ = 70.69° Z=1 V=1503.74metallic
RuSi4P4triclinicP1a=4.9362 b=5.6326 c=6.1649 α=85.5073° β=68.2559° γ=70.6990°3.732dark red;band gap 1.9 eV[32]
AgSiP2TetragonalI2d6.5275, c = 8.550, Z = 4; V = 364.3 SiP4 corner sharing305.775.58shiny black[33]
Mg2In3Si2P7monoclinicP21a 6.9375 b 6.5646 c 14.469 β 103.87° Z=2639.73.458SHG 7.1 × AgGaS2; band gap 2.21[34]
Sn4.2Si9P16rhombohedralR3a = 9.504 Å, α = 111.00°, and Z = 1band gap 0.2[35]
CdSiP2tetragonalI2da = 5.680 c = 10.431 Å Z=4 V=336.494 Å3chalcopyrite structure202.4343.995carmine colour; red luminescent[36] [37]
Cs2SiP2Dicesium catena-diphosphidosilicateOrthorhombic Ibam
Cs5SiP3Pentacesium triphosphidosilicateOrthorhombicPnmaa=6.064, b=14.336, c=15.722SiP3 planar trianglesdark metallic, air sensitive[38]
BaSi7P10triclinicP1a =6.1537 Å, b =8.0423 Å, c =8.1401 Å, α =106.863°, β =99.050°, γ =105.188°, Z =1tetrahedral network derived from T2 supertetrahedra
Ba2SiP4TetragonalI2da = 9.90.57 Å, c = 7.31.80 Å; Z = 4 V=718.06 Åcontains P-P bonds426.65band gap 1.45 eV[39]
Ba2SiP4OrthorhombicPnmaa=12.3710 b=4.6296 c=7.9783 Z= 8 V=1443.9chains of Si-P-Si426.653.925black band gap 1.7 eV[40]
Ba2Si3P6band gap 1.88
Ba3Si4P6monoclinicP21/ma=1153.7 Å, b=728.1 Å, c=752.7 Å, β = 99.41° V=623.76 Z=2Zintl compound P-P and Si-Si bonds3.78black metallic[41]
Ba4SiP4cubica=13.023 V=22194.22
BaCuSi2P3monoclinica=4.5659 b=10.1726 c=6.8236 β = 109.311 V=299.10layered[42]
LaSiP3monoclinica = 5.972, b = 25.255, c = 4.168, β= 135.71°, Z = 4two dimensional network of boat-shaped six-membered rings of Si-P-Si-P-Si-P[43]
LaSi2P6Cmc21a=10.129 b=28.17 c=10.374 Z=16P-P bonds380.93.42grey[44]
La2Mg3SiP6orthorhombicPnmaa=11.421 b=8.213 c=10.677 Z=4[45]
CeSiP3orthorhombicPn21aa = 5.861, b= 5.712, c= 25.295 V=846.7 Å3, Z=8P-P bonds261.134.095[46]
CeSi2P6Cmc21a= 10.118 b= 28.03 c= 10.311 Z= 16, V=2.924P-P bonds382.13.47grey
Ce2Mg3SiP6orthorhombicPnmaa=11.356 b=8.188 c=10.564 Z=4
PrSi2P6Cmc21a= 10.085 b= 27.95 c= 10.267 Z= 16, V=2.895 nm3P-P bondsgrey
NdSi2P6Cmc21a= 10.031,b= 27.81,c= 10.245,Z= 16, V=2.857P-P bondsgrey
ReSi4P4
OsSi4P4triclinicP1a = 4.948, b = 5.620, c = 6.175, α = 85.65, β = 68.36, γ = 70.89, Z=4 V=150.64.72metallic[47]
IrSi3P3monoclinicC2a=6.577, b=7.229, c=5.484 β=117.91°, Z=2 black
IrSi3P3monoclinicCma=6.5895 b=7.2470 c=5.4916 β=117.892dark red;band gap 1.8 eV
PtSi2P2monoclinicP21a=6.025 Å, b=9.468 Å, c=11.913 Å, β=102.91°,Z=8, V=552.26.327high resistance metallic,shiny black, air sensitive[48]
PtSi3P2triclinicP1a=4.840 Å,b=5.482 Å,c=8.052 Å, α=91.57°, β=93.52°, γ=108.14°, Z=2 V=202.35.656shiny black
AuSiPrhombohedralR3ma=3.459, c = 17.200, Z = 3; V = 178.19256.037.16shiny black
Th2SiP5triclinica=4.04.3 Å, b=4.04.5 Å, c = 10.279 pm, α = 90.09°, β = 90.09° and γ = 89.50°, Z = 1chains of corner linked SiP4 tetrahedra, and square net of P

Notes and References

  1. Eickhoff. Henrik. Toffoletti. Lorenzo. Klein. Wilhelm. Raudaschl-Sieber. Gabriele. Fässler. Thomas F.. Synthesis and Characterization of the Lithium-Rich Phosphidosilicates Li10Si2P5 and Li3Si3P7. Inorganic Chemistry. 56. 11. 6688–6694. 24 May 2017. 10.1021/acs.inorgchem.7b00755. 28537719.
  2. Toffoletti. Lorenzo. Kirchhain. Holger. Landesfeind. Johannes. Klein. Wilhelm. van Wüllen. Leo. Gasteiger. Hubert A.. Fässler. Thomas F.. Lithium Ion Mobility in Lithium Phosphidosilicates: Crystal Structure, 7Li, 29Si, and 31P MAS NMR Spectroscopy, and Impedance Spectroscopy of Li8SiP4 and Li2SiP2. Chemistry - A European Journal. 5 December 2016. 22. 49. 17635–17645. 10.1002/chem.201602903. 27786395.
  3. Haffner. Arthur. Bräuniger. Thomas. Johrendt. Dirk. Supertetrahedral Networks and Lithium-Ion Mobility in Li2SiP2 and LiSi2P3. Angewandte Chemie International Edition. 17 October 2016. 55. 43. 13585–13588. 10.1002/anie.201607074. 27676447.
  4. Juza. Robert. Schulz. Werner. 1954-02-01. Ternäre Phosphide und Arsenide des Lithiums mit Elementen der 3. und 4. Gruppe. Zeitschrift für Anorganische und Allgemeine Chemie. en. 275. 1–3. 65–78. 10.1002/zaac.19542750107. 1521-3749.
  5. Strangmüller . Stefan . Eickhoff . Henrik . Müller . David . Klein . Wilhelm . Raudaschl-Sieber . Gabriele . Kirchhain . Holger . Sedlmeier . Christian . Baran . Volodymyr . Senyshyn . Anatoliy . Deringer . Volker L. . van Wüllen . Leo . Gasteiger . Hubert A. . Fässler . Thomas F. . Fast Ionic Conductivity in the Most Lithium-Rich Phosphidosilicate Li14SiP6. Journal of the American Chemical Society . 12 August 2019 . 141 . 36 . 14200–14209 . 10.1021/jacs.9b05301. 31403777 . 199550654 .
  6. Haffner. Arthur. Hatz. Anna-Katharina. Moudrakovski. Igor. Lotsch. Bettina V.. Johrendt. Dirk. 2018. Fast Sodium-Ion Conductivity in Supertetrahedral Phosphidosilicates. Angewandte Chemie International Edition. en. 57. 21. 6155–6160. 10.1002/anie.201801405. 29611884. 1521-3773.
  7. Haffner . Arthur . Hatz . Anna-Katharina . Hoch . Constatin . Lotsch . Bettina V. . Johrendt . Dirk . Synthesis and Structure of the Sodium Phosphidosilicate Na2SiP2 . European Journal of Inorganic Chemistry . 2020 . 7 . 617–621 . 10.1002/ejic.201901083. 2020 . free .
  8. Feng. Kai. Kang. Lei. Yin. Wenlong. Hao. Wenyu. Lin. Zheshuai. Yao. Jiyong. Wu. Yicheng. KSi2P3: A new layered phosphidopolysilicate (IV). Journal of Solid State Chemistry. 205. 129–133. 10.1016/j.jssc.2013.07.018. 2013. 2013JSSCh.205..129F.
  9. Book: mp-5929: Na5SiP3 (monoclinic, P2_1/c, 14). http://www.osti.gov/servlets/purl/1277186/. 10.17188/1277186. 2014. Persson. Kristin. LBNL Materials Project; Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States). 36 Materials Science.
  10. Eisenmann. B.. Klein. J.. Somer. M.. 1991-12-01. Crystal structure of trisodium dipotassium triphosphidosilicate, Na3K2SiP3. Zeitschrift für Kristallographie - Crystalline Materials. en. 197. 1–4. 275. 10.1524/zkri.1991.197.14.275. 2196-7105. 1991ZK....197..275E. 101210322.
  11. Nuss. J.. Kalpen. H.. Hönle. W.. Hartweg. M.. von Schnering. H. G.. 1997-01-01. Neue Tetrapnictidometallate von Silicium, Germanium, Zinn und Tantal mit der Na6ZnO4-Struktur. Zeitschrift für Anorganische und Allgemeine Chemie. en. 623. 1–6. 205–211. 10.1002/zaac.19976230134. 1521-3749.
  12. Springthorpe. A. J.. Harrison. J. G.. June 1969. MgSiP2: a New Member of the II IV V2 Family of Semiconducting Compounds. Nature. en. 222. 5197. 977. 10.1038/222977a0. 1969Natur.222..977S. 4149732. 0028-0836. free.
  13. von Schnering. Hans Georg. Menge. Günter. AlSiP3, a compound with a novel wurtzite-pyrite intergrowth structure. Journal of Solid State Chemistry. 28. 1. 13–19. 10.1016/0022-4596(79)90053-7. 1979. 1979JSSCh..28...13V.
  14. Eisenmann. Brigitte. Somer. Mehmet. 1984-06-01. K2SiP2, ein Phosphidopolysilikat(IV) / K2SiP2, a Phosphidopolysilicate (IV). Zeitschrift für Naturforschung B. en. 39. 6. 736–738. 10.1515/znb-1984-0607. 95293305. 1865-7117. free.
  15. Johrendt. Dirk. Haffner. Arthur. Hatz. Anna-Katharina. Zeman. Otto E. O.. Hoch. Constantin. Lotsch. Bettina V.. 2021-03-18. Polymorphism and fast Potassium‐Ion Conduction in the T5 Supertetrahedral Phosphidosilicate KSi2P3. Angewandte Chemie. en. ange.202101187. 10.1002/ange.202101187. 235534794 . 0044-8249.
  16. Johrendt. Dirk. Haffner. Arthur. Hatz. Anna-Katharina. Zeman. Otto E. O.. Hoch. Constantin. Lotsch. Bettina V.. Polymorphism and fast Potassium-Ion Conduction in the T5 Supertetrahedral Phosphidosilicate KSi2P3. Angewandte Chemie International Edition. 2021. 60. 24. 13641–13646. en. 10.1002/anie.202101187. 33734533. 8252096. 1521-3773. free.
  17. Zhang. Xiang. Yu. Tongtong. Li. Chunlong. Wang. Shanpeng. Tao. Xutang. 2015-07-01. Synthesis and Crystal Structures of the Calcium Silicon Phosphides Ca2Si2P4, Ca3Si8P14 and Ca3Si2P4. Zeitschrift für Anorganische und Allgemeine Chemie. en. 641. 8–9. 1545–1549. 10.1002/zaac.201400620. 1521-3749.
  18. Eisenmann. B.. Jordan. H.. Schäfer. H.. Zintl-phasen mit komplexen anionen: Darstellung und struktur der o-phosphosilikate und -germanate EII4EIVP4 (MIT EII = Ca, Sr, Ba und EIV = Si, Ge). Materials Research Bulletin. 17. 1. 95–99. 10.1016/0025-5408(82)90188-x. 1982.
  19. Yu . Tongtong . Wang . Shanpeng . Zhang . Xiang . Li . Chenning . Qiao . Jie . Jia . Ning . Han . Bing . Xia . Sheng-Qing . Tao . Xutang . 2019-03-26 . MnSiP 2 : A New Mid-IR Ternary Phosphide with Strong SHG Effect and Ultrabroad Transparency Range . Chemistry of Materials . en . 31 . 6 . 2010–2018 . 10.1021/acs.chemmater.8b05015 . 104328291 . 0897-4756.
  20. Ellner. M.. El-Boragy. M.. Über die eisenhaltigen vertreter des strukturtyps Pd5Sb2. Journal of Alloys and Compounds. 184. 1. 131–138. 10.1016/0925-8388(92)90461-h. 1992.
  21. May. Andrew F.. McGuire. Michael A.. Wang. Hsin. 2013-03-13. Thermoelectric properties of polycrystalline NiSi3P4. Journal of Applied Physics. 113. 10. 103707–103707–5. 10.1063/1.4794992. 0021-8979. 2013JAP...113j3707M. 1303.3772. 119224937.
  22. Wallinda. Jörg. Jeitschko. Wolfgang. Ni1.282(4)Si1.284(5)P3 or NiSi2P3: Two Solutions with Different Atom Distributions for One Single-Crystal X-Ray Data Set, Both Refined to Residuals of Less Than 2.5%. Journal of Solid State Chemistry. 114. 2. 476–480. 10.1006/jssc.1995.1071. 1995. 1995JSSCh.114..476W.
  23. Perrier. Ch.. Kreisel. J.. Vincent. H.. Chaix-Pluchery. O.. Madar. R.. Synthesis, crystal structure, physical properties and Raman spectroscopy of transition metal phospho-silicides MSixPy (M = Fe, Co, Ru, Rh, Pd, Os, Ir, Pt). Journal of Alloys and Compounds. 262-263. 71–77. 10.1016/s0925-8388(97)00331-9. 1997.
  24. Coquil. Gaël. Fullenwarth. Julien. Grinbom. Gal. Sougrati. Moulay Tahar. Stievano. Lorenzo. Zitoun. David. Monconduit. Laure. FeSi 4 P 4 : A novel negative electrode with atypical electrochemical mechanism for Li and Na-ion batteries. Journal of Power Sources. 372. 196–203. 10.1016/j.jpowsour.2017.10.069. 2017. 2017JPS...372..196C.
  25. Kaiser. Peter. Jeitschko. Wolfgang. 1996-01-01. Preparation and crystal structure of the Copper Silicon Polyphosphide Cu4SiP8. Zeitschrift für Anorganische und Allgemeine Chemie. en. 622. 1. 53–56. 10.1002/zaac.19966220109. 1521-3749.
  26. Abrahams. S. C.. Bernstein. J. L.. Crystal Structure of Luminescent ZnSiP4. The Journal of Chemical Physics. June 1970. 52. 11. 5607–5613. 10.1063/1.1672831. 1970JChPh..52.5607A.
  27. Yuan. Yifang. Zhu. Xiangde. Zhou. Yonghui. Chen. Xuliang. An. Chao. Zhou. Ying. Zhang. Ranran. Gu. Chuanchuan. Zhang. Lili. Li. Xinjian. Yang. Zhaorong. December 2021. Pressure-engineered optical properties and emergent superconductivity in chalcopyrite semiconductor ZnSiP2. NPG Asia Materials. en. 13. 1. 15. 10.1038/s41427-021-00285-0. 2021npjAM..13...15Y. 231886575. 1884-4049. free.
  28. Chen . Jindong . Wu . Qingchen . Tian . Haotian . Jiang . Xiaotian . Xu . Feng . Zhao . Xin . Lin . Zheshuai . Luo . Min . Ye . Ning . 2022-03-31 . Uncovering a Vital Band Gap Mechanism of Pnictides . Advanced Science . 9 . 14 . en . 2105787 . 10.1002/advs.202105787 . 35486031 . 9109059 . 247861820 . 2198-3844. free .
  29. Haffner. Arthur. Weippert. Valentin. Johrendt. Dirk. 2021. The Phosphidosilicates SrSi7P10 and BaSi7P10. Zeitschrift für anorganische und allgemeine Chemie. en. 647. 4. 326–330. 10.1002/zaac.202000296. 1521-3749. free.
  30. Aicher . J . Johrendt . D. . 2024 . Crystal Structures of the Phosphidosilicates Mg2Sr3Si20P30 and MgSr3Si3P7 . DGK Conference (German Crystallographic Society) . 32 . 11.
  31. Kirschen. M.. Vincent. H.. Perrier. Ch.. Chaudouet. P.. Chenevier. B.. Madar. R.. Synthesis and crystal structure of rhodium and iridium new phospho-silicides. Materials Research Bulletin. 30. 4. 507–513. 10.1016/0025-5408(95)00021-6. 1995.
  32. Lee. Shannon. Carnahan. Scott L.. Akopov. Georgiy. Yox. Philip. Wang. Lin‐Lin. Rossini. Aaron J.. Wu. Kui. Kovnir. Kirill. April 2021. Noncentrosymmetric Tetrel Pnictides RuSi 4 P 4 and IrSi 3 P 3 : Nonlinear Optical Materials with Outstanding Laser Damage Threshold. Advanced Functional Materials. en. 31. 16. 2010293. 10.1002/adfm.202010293. 1616-301X. free.
  33. Kaiser. Peter. Jeitschko. Wolfgang. Preparation and Crystal Structures of the Ternary Compounds Ag2SiP2 and AuSiP. Zeitschrift für Naturforschung B. April 1997. 52. 4. 462–468. 10.1515/znb-1997-0406. 196951651.
  34. Chen . Jindong . Chen . Hongxiang . Xu . Feng . Cao . Liling . Jiang . Xiaotian . Yang . Shunda . Sun . Yingshuang . Zhao . Xin . Lin . Chensheng . Ye . Ning . 2021-07-14 . Mg 2 In 3 Si 2 P 7 : A Quaternary Diamond-like Phosphide Infrared Nonlinear Optical Material Derived from ZnGeP 2 . Journal of the American Chemical Society . en . 143 . 27 . 10309–10316 . 10.1021/jacs.1c03930 . 34196529 . 235698297 . 0002-7863.
  35. Pivan. Jean-Yves. Guerin. Roland. Padiou. Jean. Sergent. Marcel. Preparation and crystal structure of the semiconducting compound Sn4.2Si9P16. Journal of Solid State Chemistry. 76. 1. 26–32. 10.1016/0022-4596(88)90189-2. 1988. 1988JSSCh..76...26P.
  36. Abrahams. S. C.. Bernstein. J. L.. Luminescent Piezoelectric CdSiP2: Normal Probability Plot Analysis, Crystal Structure, and Generalized Structure of the AIIBIVC2IV Family. The Journal of Chemical Physics. 15 July 1971. 55. 2. 796–803. 10.1063/1.1676146. 1971JChPh..55..796A.
  37. Zawilski . Kevin T. . Schunemann . Peter G. . Pollak . Thomas C. . Zelmon . David E. . Fernelius . Nils C. . Kenneth Hopkins . F. . April 2010 . Growth and characterization of large CdSiP2 single crystals . Journal of Crystal Growth . en . 312 . 8 . 1127–1132 . 10.1016/j.jcrysgro.2009.10.034. 2010JCrGr.312.1127Z .
  38. Eisenmann. Brigitte. Klein. Jürgen. Somer. Mehmet. 1990-01-01. CO 32−-isostere Anionen in Cs5SiP3, Cs5SiAs3, Cs5GeP3 und Cs5GeAs3. Angewandte Chemie. en. 102. 1. 92–93. 10.1002/ange.19901020127. 1990AngCh.102...92E. 1521-3757.
  39. Johrendt. Dirk. Arthur. Haffner. Synthesis, Crystal Structure, and Chemical Bonding of Ba2SiP4. Zeitschrift für Anorganische und Allgemeine Chemie. 643. 21. en. 1717–1720. 10.1002/zaac.201700320. 1521-3749. 2017. free.
  40. Haffner. Arthur. Weippert. Valentin. Johrendt. Dirk. 2019-11-08. Polymorphism of Ba 2 SiP 4: Polymorphism of Ba 2 SiP 4. Zeitschrift für anorganische und allgemeine Chemie. en. 10.1002/zaac.201900188. free.
  41. Brigitte. Eisenmann. Hanna. Jordan. Herbert. Schäfer. 7. 1984. Ba3Si4P6, eine neue Zintlphase mit vernetzten Si4P5-Käfigen/On Ba3Si4P6, a New Zintl Phase with Connected Si4P5 Cages. Zeitschrift für Naturforschung B. 39. 864–867. 10.1515/znb-1984-0705. 94537299.
  42. Yox. Philip. Lee. Shannon J.. Wang. Lin-lin. Jing. Dapeng. Kovnir. Kirill. 2021-04-01. Crystal Structure and Properties of Layered Pnictides BaCuSi 2 Pn 3 (Pn = P, As). Inorganic Chemistry. 60. 8. en. 5627–5634. 10.1021/acs.inorgchem.0c03636. 33794094. 232762736. 0020-1669.
  43. Web site: Fehrmann. Birgit. Jeitschko. Wolfgang. THE PHOSPHIDOSILICATE-POLYPHOSPHIDES LaSiP3 AND Th2SiP5. www.xray.cz. 2 June 2017.
  44. Kaiser. Peter. Jeitschko. Wolfgang. The Rare Earth Silicon PhosphidesLnSi2P6(Ln= La, Ce, Pr, and Nd). Journal of Solid State Chemistry. July 1996. 124. 2. 346–352. 10.1006/jssc.1996.0248. 1996JSSCh.124..346K.
  45. Wang . Jian . Greenfield . Joshua T. . Kovnir . Kirill . 2017-07-17 . Synthesis, Crystal Structure, and Magnetic Properties of R 2 Mg 3 SiPn 6 (R = La, Ce; Pn = P, As) . Inorganic Chemistry . en . 56 . 14 . 8348–8354 . 10.1021/acs.inorgchem.7b01015 . 0020-1669.
  46. 10.1246/nikkashi.1978.1214. 1978. Hayakawa. Hiroshi. セリウムケイ素トリリン化物(CeSiP3)の結晶構造. Crystal structure of cerium silicon triphosphide (CeSiP3). Nippon Kagaku Kaishi. 9. 1214–1220. Ono. Shuitiro. Kobayashi. Akiko. Sasaki. Yukiyoshi.
  47. Perrier. Ch.. Vincent. H.. Chaudouët. P.. Chenevier. B.. Madar. R.. Preparation and crystal structure of a new family of transition metal phospho-silicides. Materials Research Bulletin. 30. 3. 357–364. 10.1016/0025-5408(95)00001-1. 1995.
  48. Perrier. Ch.. Kirschen. M.. Vincent. H.. Gottlieb. U.. Chenevier. B.. Madar. R.. Synthesis and Crystal Structures of Two New Platinum Phosphosilicides, PtSi3P2and PtSi2P2; Electrical Resistivity of PtSi3P2. Journal of Solid State Chemistry. 133. 2. 473–478. 10.1006/jssc.1997.7512. 1997. 1997JSSCh.133..473P.