Telluride phosphide explained

The telluride phosphides are a class of mixed anion compounds containing both telluride and phosphide ions (Te2− P3−). The phosphidotelluride or telluridophosphide compounds have a [TeP]3− group in which the tellurium atom has a bond to the phosphorus atom. A formal charge of −2 is on the phosphorus and −1 on the tellurium. There is no binary compound of tellurium and phosphorus. Not many telluride phosphides are known, but they have been discovered for noble metals, actinides, and group 4 elements.

Structure

The titanium group elements form layered hexagonal crystals that can be exfoliated to monolayers. These contain ditelluride Te22- units.[1] These layered compounds can be intercalated to form non-stoichiometric compounds with zinc, copper or cadmium by heating with the metals.[2] Actinide telluride phosphides contain diphosphide anions P2.[3]

List

nameformulaMWratioTe:Psystemspace groupunit cellÅvolumedensityopticalband gapCASreferences
P4S2Temolecular[4] [5]
P4STe2molecular
Ti2PTe2hexagonalRma=3.6387 c=28.486metallicon c axisalso monolayer
MnxTi2PTe2Rm1a=3.648 c=9.628[6]
FexTi2PTe2Rm1a=3.6356 c=9.639
Cu0.282Ti2PTe2Rm1a=3.6726 c=9.7822
Zn0.36Ti2PTe2Rm1a=3.6917 c=9.8480
CdxTi2PTe2Rm1a=3.6806 c=10.238
Zr2PTe2rhombohedralRma=3.8117 c=29.189 Z=3367.276.356blackalso monolayer[7]
CuxZr2PTe2Rm1a=3.8445 c=10.1082
Zn0.337Zr2PTe2Rm1a=3.85873 c=10.1664
Cd0.194Zr2PTe2Rm1a=3.8469 c=10.4197
RuTeP[8]
BaP4TeorthorhombicPnma witha =16.486 b =6.484 c =7.076 Z =4[9]
CeP0.4Te1.6
CeP1.1Te0.9
cerium phosphide telluride Ce3Te3P3:1[10]
Hf2Te2PRma=3.7946 c=29.14also monolayer
IrTePorthorhombica=6.030 b=6.131 c=12.132[11]
OsTeP1:1arsenopyrite structureP21/ca = 6.2291 b = 6.1604 c = 6.2449 β = 112.01°222.210.43[12]
ThPTe1:1tetragonala = 4.2505 and c = 17.268
UPTetetragonala=4.100 c=17.026[13]
U2PTe2Opseudo tetragonala = 40.37c = 32.07
NpPTetetragonalP4/nmma=4.265 c=9.067
PuPTetetragonalP4/nmma=4.289 c=9.098
AmPTetetragonalP4/nmma=4.269 c=9.050

Notes and References

  1. Chen. K-W. Das. S. Rhodes. D. Memaran. S. Besara. T. Siegrist. T. Manousakis. E. Balicas. L. Baumbach. R E. 2016-04-13. Uncovering the behavior of Hf 2 Te 2 P and the candidate Dirac metal Zr 2 Te 2 P. Journal of Physics: Condensed Matter. 28. 14. 14LT01. 10.1088/0953-8984/28/14/14LT01. 26953683. 0953-8984. 1602.03252. 2016JPCM...28nLT01C. 40508370.
  2. Yajima. Takeshi. Koshiko. Masaki. Zhang. Yaoqing. Oguchi. Tamio. Yu. Wen. Kato. Daichi. Kobayashi. Yoji. Orikasa. Yuki. Yamamoto. Takafumi. Uchimoto. Yoshiharu. Green. Mark A.. December 2016. Selective and low temperature transition metal intercalation in layered tellurides. Nature Communications. en. 7. 1. 13809. 10.1038/ncomms13809. 2041-1723. 5171714. 27966540. 2016NatCo...713809Y.
  3. Stolze. Karoline. Isaeva. Anna. Schwarz. Ulrich. Doert. Thomas. February 2015. UPTe, ThPTe and U 2 PTe 2 O: Actinide Pnictide Chalcogenides with Diphosphide Anions: Actinide Pnictide Chalcogenides with Diphosphide Anions. European Journal of Inorganic Chemistry. en. 2015. 5. 778–785. 10.1002/ejic.201402951.
  4. Web site: Prinzipien der Syntheseplanung in der anorganischen Festkörperchemie: Analyse der Phasenbildung in Systemen M/P/Te, M = Ti, Ce, Si. Philipp. Frauke. 16 October 2008. Qucosa.
  5. Baldus. Hans Peter. Blachnik. Roger. 1990-12-01. Neue A4B3-Moleküle: P3SbS3, P4S2Te und P4STe2 / New A4B3 Molecules: P3SbS3, P4S2Te and P4STe2. Zeitschrift für Naturforschung B. 45. 12. 1605–1609. 10.1515/znb-1990-1201. 97778193. 1865-7117. free.
  6. Yajima . Takeshi . Koshiko . Masaki . Zhang . Yaoqing . Oguchi . Tamio . Yu . Wen . Kato . Daichi . Kobayashi . Yoji . Orikasa . Yuki . Yamamoto . Takafumi . Uchimoto . Yoshiharu . Green . Mark A. . Kageyama . Hiroshi . 2016-12-14 . Selective and low temperature transition metal intercalation in layered tellurides . Nature Communications . en . 7 . 1 . 13809 . 10.1038/ncomms13809 . 2041-1723 . 5171714 . 27966540.
  7. Tschulik. Kristina. Ruck. Michael. Binnewies. Michael. Milke. Edgar. Hoffmann. Stefan. Schnelle. Walter. Fokwa. Boniface P. T.. Gilleßen. Michael. Schmidt. Peer. July 2009. Chemistry and Physical Properties of the Phosphide Telluride Zr 2 PTe 2. European Journal of Inorganic Chemistry. en. 2009. 21. 3102–3110. 10.1002/ejic.200900346.
  8. Zintl. E.. 1939-01-07. Intermetallische Verbindungen. Angewandte Chemie. de. 52. 1. 1–6. 10.1002/ange.19390520102. 1939AngCh..52....1Z .
  9. Jörgens. Stefan. Johrendt. Dirk. Mewis. Albrecht. 2003-06-06. BaP4Te2—A Ternary Telluride with P-Te Bonds and a Structural Fragment of Black Phosphorus. Chemistry - A European Journal. 9. 11. 2405–2410. 10.1002/chem.200304858. 12794885.
  10. Schmidt. Peer. Dallmann. Hannelore. Kadner. Gudrun. Krug. Jutta. Philipp. Frauke. Teske. Klaus. October 2009. The thermochemical behaviour of Te8O10(PO4)4 and its use for phosphide telluride synthesis. Journal of Inorganic and General Chemistry . 635. 13–14. 2153. 10.1002/zaac.200900350. 98117179 . free.
  11. Kliche. Gerhard. 1986-01-01. NOTIZEN: Iridiumphosphidtellurid, IrPTe / Iridium Phosphide Telluride, IrPTe. Zeitschrift für Naturforschung B. 41. 1. 130–131. 10.1515/znb-1986-0126. 98059160. 1865-7117. free.
  12. Lutz. H. D.. Schmidt. Th.. Wäschenbach. G.. 1988. Phasendiagramme von Chalkogeniden und Pnictiden des Rutheniums und Osmiums mit Pyrit-, Markasit-, Löllingit‐ und Arsenopyritstruktur. Zeitschrift für anorganische und allgemeine Chemie. de. 562. 1. 7–16. 10.1002/zaac.19885620102. 0044-2313.
  13. Book: 9783540456841. 153–154. D.. Kaczorowski. Pnictides and Chalcogenides iii: Ternary Actinide Pnictides and Chalcogenides.