Peroxisome proliferator-activated receptor gamma explained
Peroxisome proliferator-activated receptor gamma (PPAR-γ or PPARG), also known as the glitazone reverse insulin resistance receptor, or NR1C3 (nuclear receptor subfamily 1, group C, member 3) is a type II nuclear receptor functioning as a transcription factor that in humans is encoded by the PPARG gene.[1] [2] [3]
Tissue distribution
PPARG is mainly present in adipose tissue, colon and macrophages. Two isoforms of PPARG are detected in the human and in the mouse: PPAR-γ1 (found in nearly all tissues except muscle) and PPAR-γ2 (mostly found in adipose tissue and the intestine).[4] [5]
Gene expression
This gene encodes a member of the peroxisome proliferator-activated receptor (PPAR) subfamily of nuclear receptors. PPARs form heterodimers with retinoid X receptors (RXRs) and these heterodimers regulate transcription of various genes. Three subtypes of PPARs are known: PPAR-alpha, PPAR-delta, and PPAR-gamma. The protein encoded by this gene is PPAR-gamma and is a regulator of adipocyte differentiation. Alternatively spliced transcript variants that encode different isoforms have been described.[6]
The activity of PPARG can be regulated via phosphorylation through the MEK/ERK pathway. This modification decreases transcriptional activity of PPARG and leads to diabetic gene modifications, and results in insulin insensitivity. For example, the phosphorylation of serine 112 will inhibit PPARG function, and enhance adipogenic potential of fibroblasts.[7]
Function
PPARG regulates fatty acid storage and glucose metabolism. The genes activated by PPARG stimulate lipid uptake and adipogenesis by fat cells. PPARG knockout mice are devoid of adipose tissue, establishing PPARG as a master regulator of adipocyte differentiation.[8]
PPARG increases insulin sensitivity by enhancing storage of fatty acids in fat cells (reducing lipotoxicity), by enhancing adiponectin release from fat cells, by inducing FGF21, and by enhancing nicotinic acid adenine dinucleotide phosphate production through upregulation of the CD38 enzyme.[9]
PPARG promotes anti-inflammatory M2 macrophage activation in mice.[10]
Adiponectin induces ABCA1-mediated reverse cholesterol transport by activation of PPAR-γ and LXRα/β.[11]
Many naturally occurring agents directly bind with and activate PPAR gamma. These agents include various polyunsaturated fatty acids like arachidonic acid and arachidonic acid metabolites such as certain members of the 5-hydroxyicosatetraenoic acid and 5-oxo-eicosatetraenoic acid family, e.g., 5-oxo-15(S)-HETE and 5-oxo-ETE or 15-hydroxyicosatetraenoic acid family including 15(S)-HETE, 15(R)-HETE, and 15(S)-HpETE,[12] [13] [14] the phytocannabinoid tetrahydrocannabinol (THC),[15] its metabolite THC-COOH, and its synthetic analog ajulemic acid (AJA).[16] The activation of PPAR gamma by these and other ligands may be responsible for inhibiting the growth of cultured human breast, gastric, lung, prostate and other cancer cell lines.[17] [18]
During embryogenesis, PPARG first substantially expresses in interscapular brown fat pad.[19] The depletion of PPARG will result in embryonic lethality at E10.5, due to the vascular anomalies in placenta, with no permeation of fetal blood vessels and dilation and rupture of maternal blood sinuses.[20] The expression PPARG can be detected in placenta as early as E8.5 and through the remainder of gestation, mainly located in the primary trophoblast cell in the human placenta.[19] PPARG is required for epithelial differentiation of trophoblast tissue, which is critical for proper placenta vascularization. PPARG agonists inhibit extravillous cytotrophoblast invasion. PPARG is also required for the accumulation of lipid droplets by the placenta.[7]
Interactions
Peroxisome proliferator-activated receptor gamma has been shown to interact with:
Research
PPAR-gamma agonists have been used in the treatment of hyperlipidaemia and hyperglycemia.[31] [32]
Many insulin sensitizing drugs (namely, the thiazolidinediones) used in the treatment of diabetes activate PPARG as a means to lower serum glucose without increasing pancreatic insulin secretion. Activation of PPARG is more effective for skeletal muscle insulin resistance than for insulin resistance of the liver.[33]
See also
Notes and References
- Greene ME, Blumberg B, McBride OW, Yi HF, Kronquist K, Kwan K, Hsieh L, Greene G, Nimer SD . 6 . Isolation of the human peroxisome proliferator activated receptor gamma cDNA: expression in hematopoietic cells and chromosomal mapping . Gene Expression . 4 . 4–5 . 281–99 . 1995 . 7787419 . 6134382 .
- Elbrecht A, Chen Y, Cullinan CA, Hayes N, Leibowitz MD, Moller DE, Berger J . Molecular cloning, expression and characterization of human peroxisome proliferator activated receptors gamma 1 and gamma 2 . Biochemical and Biophysical Research Communications . 224 . 2 . 431–7 . July 1996 . 8702406 . 10.1006/bbrc.1996.1044 .
- Michalik L, Auwerx J, Berger JP, Chatterjee VK, Glass CK, Gonzalez FJ, Grimaldi PA, Kadowaki T, Lazar MA, O'Rahilly S, Palmer CN, Plutzky J, Reddy JK, Spiegelman BM, Staels B, Wahli W . 2240461 . 6 . International Union of Pharmacology. LXI. Peroxisome proliferator-activated receptors . Pharmacological Reviews . 58 . 4 . 726–41 . December 2006 . 17132851 . 10.1124/pr.58.4.5 .
- Fajas L, Auboeuf D, Raspé E, Schoonjans K, Lefebvre AM, Saladin R, Najib J, Laville M, Fruchart JC, Deeb S, Vidal-Puig A, Flier J, Briggs MR, Staels B, Vidal H, Auwerx J . 6 . The organization, promoter analysis, and expression of the human PPARgamma gene . The Journal of Biological Chemistry . 272 . 30 . 18779–89 . July 1997 . 9228052 . 10.1074/jbc.272.30.18779 . free .
- Park YK, Wang L, Giampietro A, Lai B, Lee JE, Ge K . Distinct Roles of Transcription Factors KLF4, Krox20, and Peroxisome Proliferator-Activated Receptor γ in Adipogenesis . Molecular and Cellular Biology . 37 . 2 . 18779–89 . January 2017 . 27777310 . 5214852 . 10.1128/MCB.00554-16 .
- Web site: Entrez Gene: PPARG peroxisome proliferator-activated receptor gamma.
- Suwaki N, Masuyama H, Masumoto A, Takamoto N, Hiramatsu Y . Expression and potential role of peroxisome proliferator-activated receptor gamma in the placenta of diabetic pregnancy . Placenta . 28 . 4 . 315–23 . April 2007 . 16753211 . 10.1016/j.placenta.2006.04.002 .
- Ahmadian M, Suh JM, Hah N, Liddle C, Atkins AR, Downes M, Evans RM . PPARγ signaling and metabolism: the good, the bad and the future . Nature Medicine . 19 . 5 . 557–66 . May 2013 . 23652116 . 3870016 . 10.1038/nm.3159 .
- Song EK, Lee YR, Kim YR, Yeom JH, Yoo CH, Kim HK, Park HM, Kang HS, Kim JS, Kim UH, Han MK . 6 . NAADP mediates insulin-stimulated glucose uptake and insulin sensitization by PPARγ in adipocytes . Cell Reports . 2 . 6 . 1607–19 . December 2012 . 23177620 . 10.1016/j.celrep.2012.10.018 . free .
- Peluso I, Morabito G, Urban L, Ioannone F, Serafini M . Oxidative stress in atherosclerosis development: the central role of LDL and oxidative burst . Endocrine, Metabolic & Immune Disorders Drug Targets . 12 . 4 . 351–60 . December 2012 . 23061409 . 10.2174/187153012803832602 .
- Hafiane A, Gasbarrino K, Daskalopoulou SS . The role of adiponectin in cholesterol efflux and HDL biogenesis and metabolism . Metabolism . 100 . 153953 . November 2019 . 31377319 . 10.1016/j.metabol.2019.153953 . 203413137 .
- Dreyer C, Keller H, Mahfoudi A, Laudet V, Krey G, Wahli W . Positive regulation of the peroxisomal beta-oxidation pathway by fatty acids through activation of peroxisome proliferator-activated receptors (PPAR) . Biology of the Cell . 77 . 1 . 67–76 . 1993 . 8390886 . 10.1016/s0248-4900(05)80176-5 . 10746292 .
- O'Flaherty JT, Rogers LC, Paumi CM, Hantgan RR, Thomas LR, Clay CE, High K, Chen YQ, Willingham MC, Smitherman PK, Kute TE, Rao A, Cramer SD, Morrow CS . 6 . 5-Oxo-ETE analogs and the proliferation of cancer cells . Biochimica et Biophysica Acta (BBA) - Molecular and Cell Biology of Lipids . 1736 . 3 . 228–36 . October 2005 . 16154383 . 10.1016/j.bbalip.2005.08.009 .
- Naruhn S, Meissner W, Adhikary T, Kaddatz K, Klein T, Watzer B, Müller-Brüsselbach S, Müller R . 30996954 . 6 . 15-hydroxyeicosatetraenoic acid is a preferential peroxisome proliferator-activated receptor beta/delta agonist . Molecular Pharmacology . 77 . 2 . 171–84 . February 2010 . 19903832 . 10.1124/mol.109.060541 .
- O'Sullivan SE, Tarling EJ, Bennett AJ, Kendall DA, Randall MD . Novel time-dependent vascular actions of Delta9-tetrahydrocannabinol mediated by peroxisome proliferator-activated receptor gamma . Biochemical and Biophysical Research Communications . 337 . 3 . 824–31 . November 2005 . 16213464 . 10.1016/j.bbrc.2005.09.121 .
- Liu J, Li H, Burstein SH, Zurier RB, Chen JD . Activation and binding of peroxisome proliferator-activated receptor gamma by synthetic cannabinoid ajulemic acid . Molecular Pharmacology . 63 . 5 . 983–92 . May 2003 . 12695526 . 10.1124/mol.63.5.983 . 22671555 .
- Krishnan A, Nair SA, Pillai MR . Biology of PPAR gamma in cancer: a critical review on existing lacunae . Current Molecular Medicine . 7 . 6 . 532–40 . September 2007 . 17896990 . 10.2174/156652407781695765 .
- Ezzeddini R, Taghikhani M, Salek Farrokhi A, Somi MH, Samadi N, Esfahani A, Rasaee, MJ . Downregulation of fatty acid oxidation by involvement of HIF-1α and PPARγ in human gastric adenocarcinoma and its related clinical significance . Journal of Physiology and Biochemistry . 77 . 2 . 249–260 . May 2021 . 33730333 . 10.1007/s13105-021-00791-3 . 232300877 .
- Barak Y, Nelson MC, Ong ES, Jones YZ, Ruiz-Lozano P, Chien KR, Koder A, Evans RM . 6 . PPAR gamma is required for placental, cardiac, and adipose tissue development . Molecular Cell . 4 . 4 . 585–95 . October 1999 . 10549290 . 10.1016/s1097-2765(00)80209-9 . free .
- Schaiff WT, Barak Y, Sadovsky Y . 54322301 . The pleiotropic function of PPAR gamma in the placenta . Molecular and Cellular Endocrinology . 249 . 1–2 . 10–5 . April 2006 . 16574314 . 10.1016/j.mce.2006.02.009 .
- Brendel C, Gelman L, Auwerx J . Multiprotein bridging factor-1 (MBF-1) is a cofactor for nuclear receptors that regulate lipid metabolism . Molecular Endocrinology . 16 . 6 . 1367–77 . June 2002 . 12040021 . 10.1210/mend.16.6.0843 . free .
- Berger J, Patel HV, Woods J, Hayes NS, Parent SA, Clemas J, Leibowitz MD, Elbrecht A, Rachubinski RA, Capone JP, Moller DE . 20343538 . 6 . A PPARgamma mutant serves as a dominant negative inhibitor of PPAR signaling and is localized in the nucleus . Molecular and Cellular Endocrinology . 162 . 1–2 . 57–67 . April 2000 . 10854698 . 10.1016/S0303-7207(00)00211-2 .
- Gampe RT, Montana VG, Lambert MH, Miller AB, Bledsoe RK, Milburn MV, Kliewer SA, Willson TM, Xu HE . 6 . Asymmetry in the PPARgamma/RXRalpha crystal structure reveals the molecular basis of heterodimerization among nuclear receptors . Molecular Cell . 5 . 3 . 545–55 . March 2000 . 10882139 . 10.1016/S1097-2765(00)80448-7 . free .
- Franco PJ, Li G, Wei LN . 19487189 . Interaction of nuclear receptor zinc finger DNA binding domains with histone deacetylase . Molecular and Cellular Endocrinology . 206 . 1–2 . 1–12 . August 2003 . 12943985 . 10.1016/S0303-7207(03)00254-5 .
- Heinlein CA, Ting HJ, Yeh S, Chang C . Identification of ARA70 as a ligand-enhanced coactivator for the peroxisome proliferator-activated receptor gamma . The Journal of Biological Chemistry . 274 . 23 . 16147–52 . June 1999 . 10347167 . 10.1074/jbc.274.23.16147 . free .
- Nishizawa H, Yamagata K, Shimomura I, Takahashi M, Kuriyama H, Kishida K, Hotta K, Nagaretani H, Maeda N, Matsuda M, Kihara S, Nakamura T, Nishigori H, Tomura H, Moore DD, Takeda J, Funahashi T, Matsuzawa Y . 6 . Small heterodimer partner, an orphan nuclear receptor, augments peroxisome proliferator-activated receptor gamma transactivation . The Journal of Biological Chemistry . 277 . 2 . 1586–92 . January 2002 . 11696534 . 10.1074/jbc.M104301200 . free .
- Wallberg AE, Yamamura S, Malik S, Spiegelman BM, Roeder RG . Coordination of p300-mediated chromatin remodeling and TRAP/mediator function through coactivator PGC-1alpha . Molecular Cell . 12 . 5 . 1137–49 . November 2003 . 14636573 . 10.1016/S1097-2765(03)00391-5 . free .
- Puigserver P, Adelmant G, Wu Z, Fan M, Xu J, O'Malley B, Spiegelman BM . Activation of PPARgamma coactivator-1 through transcription factor docking . Science . 286 . 5443 . 1368–71 . November 1999 . 10558993 . 10.1126/science.286.5443.1368 .
- Fajas L, Egler V, Reiter R, Hansen J, Kristiansen K, Debril MB, Miard S, Auwerx J . 6 . The retinoblastoma-histone deacetylase 3 complex inhibits PPARgamma and adipocyte differentiation . Developmental Cell . 3 . 6 . 903–10 . December 2002 . 12479814 . 10.1016/S1534-5807(02)00360-X . free .
- Mittal S, Inamdar S, Acharya J, Pekhale K, Kalamkar S, Boppana R, Ghaskadbi S . miR-3666 inhibits development of hepatic steatosis by negatively regulating PPARγ . Biochimica et Biophysica Acta (BBA) - Molecular and Cell Biology of Lipids . 1865 . 10 . 158777 . October 2020 . 32755726 . 10.1016/j.bbalip.2020.158777 . 221017099 .
- Lehrke M, Lazar MA . 18526710 . The many faces of PPARgamma . Cell . 123 . 6 . 993–9 . December 2005 . 16360030 . 10.1016/j.cell.2005.11.026 . review . free .
- Kim JH, Song J, Park KW . 12296573 . The multifaceted factor peroxisome proliferator-activated receptor γ (PPARγ) in metabolism, immunity, and cancer . Archives of Pharmacal Research . 38 . 3 . 302–12 . March 2015 . 25579849 . 10.1007/s12272-015-0559-x . review .
- Abdul-Ghani MA, Tripathy D, DeFronzo RA . Contributions of beta-cell dysfunction and insulin resistance to the pathogenesis of impaired glucose tolerance and impaired fasting glucose . Diabetes Care . 29 . 5 . 1130–9 . May 2006 . 16644654 . 10.2337/dc05-2179 . free . review .