Pentagonal rotunda explained

Type:Johnson
Faces:10 triangles
1+5 pentagons
1 decagon
Edges:35
Vertices:20
Dual:-
Properties:convex
Net:Pentagonal Rotunda Net.svg

In geometry, the pentagonal rotunda is one of the Johnson solids . It can be seen as half of an icosidodecahedron, or as half of a pentagonal orthobirotunda. It has a total of 17 faces.

Formulae

The following formulae for volume, surface area, circumradius, and height are valid if all faces are regular, with edge length a:

V=\left(1
12

\left(45+17\sqrt{5}\right)\right)a3 ≈ 6.91776...a3

\begin{align} A&=\left(1
2

\sqrt{5\left(145+58\sqrt{5}+2\sqrt{30\left(65+29\sqrt{5}\right)}\right)}\right)a2\\ &=\left(

1
2

\left(5\sqrt{3}+\sqrt{10\left(65+29\sqrt{5}\right)}\right)\right)a2 ≈ 22.3472...a2 \end{align}

R=\left(1
2

\left(1+\sqrt{5}\right)\right)a ≈ 1.61803...a

H=\left(\sqrt{1+2
\sqrt{5
}}\right)a\approx1.37638...a

Dual polyhedron

The dual of the pentagonal rotunda has 20 faces: 10 triangular, 5 rhombic, and 5 kites.