Passive cooling explained

Passive cooling is a building design approach that focuses on heat gain control and heat dissipation in a building in order to improve the indoor thermal comfort with low or no energy consumption.[1] [2] This approach works either by preventing heat from entering the interior (heat gain prevention) or by removing heat from the building (natural cooling).[3]

Natural cooling utilizes on-site energy, available from the natural environment, combined with the architectural design of building components (e.g. building envelope), rather than mechanical systems to dissipate heat.[4] Therefore, natural cooling depends not only on the architectural design of the building but on how the site's natural resources are used as heat sinks (i.e. everything that absorbs or dissipates heat). Examples of on-site heat sinks are the upper atmosphere (night sky), the outdoor air (wind), and the earth/soil.

Passive cooling is an important tool for design of buildings for climate change adaptationreducing dependency on energy-intensive air conditioning in warming environments.[5] [6]

Overview

Passive cooling covers all natural processes and techniques of heat dissipation and modulation without the use of energy. Some authors consider that minor and simple mechanical systems (e.g. pumps and economizers) can be integrated in passive cooling techniques, as long they are used to enhance the effectiveness of the natural cooling process.[7] Such applications are also called 'hybrid cooling systems'. The techniques for passive cooling can be grouped in two main categories:

Preventive techniques

Protection from or prevention of heat gains encompasses all the design techniques that minimizes the impact of solar heat gains through the building's envelope and of internal heat gains that is generated inside the building due occupancy and equipment. It includes the following design techniques:

Modulation and heat dissipation techniques

The modulation and heat dissipation techniques rely on natural heat sinks to store and remove the internal heat gains. Examples of natural sinks are night sky, earth soil, and building mass.[11] Therefore, passive cooling techniques that use heat sinks can act to either modulate heat gain with thermal mass or dissipate heat through natural cooling strategies.

Ventilation

Ventilation as a natural cooling strategy uses the physical properties of air to remove heat or provide cooling to occupants. In select cases, ventilation can be used to cool the building structure, which subsequently may serve as a heat sink.

These two strategies are part of the ventilative cooling strategies.

One specific application of natural ventilation is night flushing.

Night flushing

Night flushing (also known as night ventilation, night cooling, night purging, or nocturnal convective cooling) is a passive or semi-passive cooling strategy that requires increased air movement at night to cool the structural elements of a building.[14] [15] A distinction may be made between free cooling to chill water and night flushing to cool down building thermal mass. To execute night flushing, one typically keeps the building envelope closed during the day. The building structure's thermal mass acts as a sink through the day and absorbs heat gains from occupants, equipment, solar radiation, and conduction through walls, roofs, and ceilings. At night, when the outside air is cooler, the envelope is opened, allowing cooler air to pass through the building so the stored heat can be dissipated by convection.[16] This process reduces the temperature of the indoor air and of the building's thermal mass, allowing convective, conductive, and radiant cooling to take place during the day when the building is occupied. Night flushing is most effective in climates with a large diurnal swing, i.e. a large difference between the daily maximum and minimum outdoor temperature.[17] For optimal performance, the nighttime outdoor air temperature should fall well below the daytime comfort zone limit of 22C, and should not have low absolute or specific humidity. In hot, humid climates the dirunial temperature swing is typically small, and the nighttime humidity stays high. Night flushing has limited effectiveness and can introduce high humidity that causes problems and can lead to high energy costs if it is removed by active systems during the day. Thus, night flushing's effectiveness is limited to sufficiently dry climates.[18] For the night flushing strategy to be effective at reducing indoor temperature and energy usage, the thermal mass must be sized sufficiently and distributed over a wide enough surface area to absorb the space's daily heat gains. Also, the total air change rate must be high enough to remove the internal heat gains from the space at night.[19] There are three ways night flushing can be achieved in a building:

These three strategies are part of the ventilative cooling strategies.

There are numerous benefits to using night flushing as a cooling strategy for buildings, including improved comfort and a shift in peak energy load.[21] Energy is most expensive during the day. By implementing night flushing, the usage of mechanical ventilation is reduced during the day, leading to energy and money savings.

There are also a number of limitations to using night flushing, such as usability, security, reduced indoor air quality, humidity, and poor room acoustics. For natural night flushing, the process of manually opening and closing windows every day can be tiresome, especially in the presence of insect screens. This problem can be eased with automated windows or ventilation louvers, such as in the Manitoba Hydro Place. Natural night flushing also requires windows to be open at night when the building is most likely unoccupied, which can raise security issues. If outdoor air is polluted, night flushing can expose occupants to harmful conditions inside the building. In loud city locations, the opening of windows can create poor acoustical conditions inside the building. In humid climates, night flushing can introduce humid air, typically above 90% relative humidity during the coolest part of the night. This moisture can accumulate in the building overnight leading to increased humidity during the day leading to comfort problems and even mold growth.

Evaporative cooling

This design relies on the evaporative process of water to cool the incoming air while simultaneously increasing the relative humidity. A saturated filter is placed at the supply inlet so the natural process of evaporation can cool the supply air. Apart from the energy to drive the fans, water is the only other resource required to provide conditioning to indoor spaces. The effectiveness of evaporative cooling is largely dependent on the humidity of the outside air; dryer air produces more cooling. A study of field performance results in Kuwait revealed that power requirements for an evaporative cooler are approximately 75% less than the power requirements for a conventional packaged unit air-conditioner.[22] As for interior comfort, a study found that evaporative cooling reduced inside air temperature by 9.6 °C compared to outdoor temperature.[23] An innovative passive system uses evaporating water to cool the roof so that a major portion of solar heat does not come inside.[24]

Ancient Egypt used evaporative cooling; for instance, reeds were hung in windows and were moistened with trickling water.[25]

Evaporation from the soil and transpiration from plants also provides cooling; the water released from the plant evaporates. Gardens and potted plants are used to drive cooling, as in the of a, the of a, and so on.

Earth coupling

See main article: Ground-coupled heat exchanger. Earth coupling uses the moderate and consistent temperature of the soil to act as a heat sink to cool a building through conduction. This passive cooling strategy is most effective when earth temperatures are cooler than ambient air temperature, such as in hot climates.

In conventional buildings

There are "smart-roof coatings" and "smart windows" for cooling that switches to warming during cold temperatures.[27] [28] The whitest paint formulation can reflect up to 98.1% of sunlight.[29]

See also

Notes and References

  1. Book: Santamouris. M.. Asimakoupolos. D.. Passive cooling of buildings. 1996. James & James (Science Publishers) Ltd. London. 978-1-873936-47-4. 1st.
  2. D.G.. Leo Samuel. S.M.. Shiva Nagendra. M.P.. Maiya. Passive alternatives to mechanical air conditioning of building: A review. Building and Environment. August 2013. 66. 54–64. 10.1016/j.buildenv.2013.04.016. 2013BuEnv..66...54S .
  3. Web site: M.j . Limb . 1998-01-01 . BIB 08: An Annotated Bibliography: Passive Cooling Technology for Office Buildings in Hot Dry and Temperate Climates . en.
  4. Book: Niles. Philip. Kenneth. Haggard. Passive Solar Handbook. 1980. California Energy Resources Conservation. B001UYRTMM.
  5. Web site: Cooling: The hidden threat for climate change and sustainable goals. 2021-09-18. phys.org. en.
  6. Ford. Brian. September 2001. Passive downdraught evaporative cooling: principles and practice. Arq: Architectural Research Quarterly. en. 5. 3. 271–280. 10.1017/S1359135501001312. 1474-0516. 110209529 .
  7. Book: Givoni, Baruch. Passive and Low Energy Cooling of Buildings. 1994. John Wiley & Sons, Inc.. New York, NY. 978-0-471-28473-4. 1st.
  8. Book: Brown. G.Z.. DeKay. Mark. Sun, wind, and light: architectural design strategies. 2001. John Wiley & Sons, Inc.. New York, NY. 978-0-471-34877-1. 2nd.
  9. Caldas . L. . January 2008 . Generation of energy-efficient architecture solutions applying GENE_ARCH: An evolution-based generative design system . . 22 . 1 . 54–64 . 10.1016/j.aei.2007.08.012.
  10. Book: Caldas. L.. Santos. L.. Proceedings of the 30th International Conference on Education and Research in Computer Aided Architectural Design in Europe (ECAADe) [Volume 1]. Generation of Energy-Efficient Patio Houses with GENE_ARCH: Combining an Evolutionary Generative Design System with a Shape Grammar. September 2012. 1. 459–470. 10.52842/conf.ecaade.2012.1.459. 978-9-49120-702-0. 26 November 2013. 2 December 2013. https://web.archive.org/web/20131202225608/http://cumincad.architexturez.net/system/files/pdf/ecaade2012_267.content.pdf. dead.
  11. Book: Lechner, Norbert. Heating, Cooling, Lighting: sustainable design methods for architects. 2009. John Wiley & Sons, Inc.. New York, NY. 978-0-470-04809-2. 3rd.
  12. Hossain. Md Muntasir. Gu. Min. 2016-02-04. Radiative cooling: Principles, progress and potentials. Advanced Science. en. 3. 7. 1500360. 10.1002/advs.201500360. 27812478. 5067572. 2198-3844.
  13. Book: Grondzik. Walter T.. Kwok. Alison G.. Stein. Benjamim. Reynolds. John S.. Mechanical and Electrical Equipment For Building. 2010. John Wiley & Sons. Hoboken, NJ. 978-0-470-19565-9. 11th.
  14. Patrice. Blondeau. Maurice. Sperandio. Francis. Allard. Night ventilation for building cooling in summer. Solar Energy. 1997. 61. 5. 327–335. 10.1016/S0038-092X(97)00076-5. 1997SoEn...61..327B.
  15. Nikolai. Artmann. Heinrich. Manz. Per Kvols. Heiselberg. Climatic potential for passive cooling of buildings by night-time ventilation in Europe. Applied Energy. February 2007. 84. 2. 187–201. 10.1016/j.apenergy.2006.05.004. 2007ApEn...84..187A .
  16. Book: DeKay . Mark . Brown . Charlie . December 2013 . Sun, Wind, and Light: Architectural Design Strategies . John Wiley & Sons . 978-1-118-33288-7.
  17. Givoni. Baruch. Performance and applicability of passive and low-energy cooling systems. Energy and Buildings. 1991. 17. 3. 177–199. 10.1016/0378-7788(91)90106-D. 1991EneBu..17..177G .
  18. Griffin . Kenneth A. . 3 May 2010 . Night flushing and thermal mass: maximizing natural ventilation for energy conservation through architectural features . Master of Building Science . Univ. Southern California. 1 October 2020.
  19. Book: Grondzik . Walter . Kwok . Alison . Stein . Benjamin . Reynolds . John . January 2011 . Mechanical and Electrical Equipment for Buildings . John Wiley & Sons . 978-1-118-03940-3.
  20. Jens. Pfafferott. Sebastian. Herkel. Martina. Jaschke. Design of passive cooling by night ventilation: evaluation of a parametric model and building simulation with measurements. Energy and Buildings. December 2003. 35. 11. 1129–1143. 10.1016/j.enbuild.2003.09.005. 2003EneBu..35.1129P .
  21. Edna. Shaviv. Abraham. Yezioro. Isaac. Capeluto. Thermal mass and night ventilation as passive cooling design strategy. Renewable Energy. 2001. 24. 3–4. 445–452. 10.1016/s0960-1481(01)00027-1.
  22. G.P.. Maheshwari. F.. Al-Ragom. R.K.. Suri. Energy-saving potential of an indirect evaporative cooler. Applied Energy. May 2001. 69. 1. 69–76. 10.1016/S0306-2619(00)00066-0. 2001ApEn...69...69M .
  23. Amer. E.H.. Passive options for solar cooling of buildings in arid areas. Energy. July 2006. 31. 8–9. 1332–1344. 10.1016/j.energy.2005.06.002. 2006Ene....31.1332A .
  24. Web site: Beat the Heat with an Easy Cooling Solution That Costs a Tenth of an AC. Anil K.. Rajvanshi. March 30, 2017. The Better India.
  25. Bahadori . M.N. . Passive Cooling Systems in Iranian Architecture. Scientific American . 238. 2. 144–154. February 1978. 10.1038/scientificamerican0278-144 . 1978SciAm.238b.144B. 119819386 .
  26. Book: Kwok. Alison G.. Grondzik. Walter T.. The Green Studio Handbook. Environmental strategies for schematic design. 2011. Architectural Press. Burlington, MA. 978-0-08-089052-4. 2nd.
  27. Tang . Kechao . Dong . Kaichen . Li . Jiachen . Gordon . Madeleine P. . Reichertz . Finnegan G. . Kim . Hyungjin . Rho . Yoonsoo . Wang . Qingjun . Lin . Chang-Yu . Grigoropoulos . Costas P. . Javey . Ali . Urban . Jeffrey J. . Yao . Jie . Levinson . Ronnen . Wu . Junqiao . Temperature-adaptive radiative coating for all-season household thermal regulation . Science . 17 December 2021 . 374 . 6574 . 1504–1509 . 10.1126/science.abf7136 . 34914515 . 2021Sci...374.1504T . 1875448 . 245263196 . EN.
  28. Wang . Shancheng . Jiang . Tengyao . Meng . Yun . Yang . Ronggui . Tan . Gang . Long . Yi . Scalable thermochromic smart windows with passive radiative cooling regulation . Science . 17 December 2021 . 374 . 6574 . 1501–1504 . 10.1126/science.abg0291 . 34914526 . 2021Sci...374.1501W . 245262692 . EN.
  29. Li . Xiangyu . Peoples . Joseph . Yao . Peiyan . Ruan . Xiulin . Ultrawhite BaSO4 Paints and Films for Remarkable Daytime Subambient Radiative Cooling . ACS Applied Materials & Interfaces . 15 April 2021 . 13 . 18 . 21733–21739 . 10.1021/acsami.1c02368 . 33856776 . 233259255 . 9 May 2021 . 1944-8244.