In algebra, the partial fraction decomposition or partial fraction expansion of a rational fraction (that is, a fraction such that the numerator and the denominator are both polynomials) is an operation that consists of expressing the fraction as a sum of a polynomial (possibly zero) and one or several fractions with a simpler denominator.[1]
The importance of the partial fraction decomposition lies in the fact that it provides algorithms for various computations with rational functions, including the explicit computation of antiderivatives,[2] Taylor series expansions, inverse Z-transforms, and inverse Laplace transforms. The concept was discovered independently in 1702 by both Johann Bernoulli and Gottfried Leibniz.[3]
In symbols, the partial fraction decomposition of a rational fraction of the form where and are polynomials, is its expression as
where is a polynomial, and, for each,the denominator is a power of an irreducible polynomial (that is not factorable into polynomials of positive degrees), andthe numerator is a polynomial of a smaller degree than the degree of this irreducible polynomial.
When explicit computation is involved, a coarser decomposition is often preferred, which consists of replacing "irreducible polynomial" by "square-free polynomial" in the description of the outcome. This allows replacing polynomial factorization by the much easier-to-compute square-free factorization. This is sufficient for most applications, and avoids introducing irrational coefficients when the coefficients of the input polynomials are integers or rational numbers.
Let be a rational fraction, where and are univariate polynomials in the indeterminate over a field. The existence of the partial fraction can be proved by applying inductively the following reduction steps.
There exist two polynomials and such that andwhere
\degP
This results immediately from the Euclidean division of by, which asserts the existence of and such that
F=EG+F1
\degF1<\degG.
This allows supposing in the next steps that
\degF<\degG.
If
\degF<\degG,
F1
F2
This can be proved as follows. Bézout's identity asserts the existence of polynomials and such that (by hypothesis, is a greatest common divisor of and).
Let
DF=G1Q+F1
\degF1<\degG1
G1.
F2=CF+QG2,
\degF2<\degG2.
F=F2G1+F1G2,
Using the preceding decomposition inductively one gets fractions of the form
F | |
Gk |
,
\degF<\degGk=k\degG,
1
G'
CG+DG'=1
F=FCG+FDG'.
FDG'
G
Hk
Q
FDG'=QG+Hk
\degHk<\degG.
Fk-1=FC+Q,
\degHk<\degG.
Iterating this process with
Fk-1 | |
Gk-1 |
F{G | |
k} |
The uniqueness can be proved as follows. Let . All together, and the have coefficients. The shape of the decomposition defines a linear map from coefficient vectors to polynomials of degree less than . The existence proof means that this map is surjective. As the two vector spaces have the same dimension, the map is also injective, which means uniqueness of the decomposition. By the way, this proof induces an algorithm for computing the decomposition through linear algebra.
If is the field of complex numbers, the fundamental theorem of algebra implies that all have degree one, and all numerators
aij
In the preceding theorem, one may replace "distinct irreducible polynomials" by "pairwise coprime polynomials that are coprime with their derivative". For example, the may be the factors of the square-free factorization of . When is the field of rational numbers, as it is typically the case in computer algebra, this allows to replace factorization by greatest common divisor computation for computing a partial fraction decomposition.
For the purpose of symbolic integration, the preceding result may be refined into
This reduces the computation of the antiderivative of a rational function to the integration of the last sum, which is called the logarithmic part, because its antiderivative is a linear combination of logarithms.
There are various methods to compute decomposition in the Theorem. One simple way is called Hermite's method. First, b is immediately computed by Euclidean division of f by g, reducing to the case where deg(f) < deg(g). Next, one knows deg(cij) < deg(pi), so one may write each cij as a polynomial with unknown coefficients. Reducing the sum of fractions in the Theorem to a common denominator, and equating the coefficients of each power of x in the two numerators, one gets a system of linear equations which can be solved to obtain the desired (unique) values for the unknown coefficients.
Given two polynomials
P(x)
Q(x)=(x-\alpha1)(x-\alpha2) … (x-\alphan)
A more direct computation, which is strongly related to Lagrange interpolation, consists of writingwhere
Q'
Q
\tfrac{1}{x-\alphaj}
This approach does not account for several other cases, but can be modified accordingly:
\degP\geq\degQ,
In an example application of this procedure, can be decomposed in the form
Clearing denominators shows that . Expanding and equating the coefficients of powers of gives
Solving this system of linear equations for and yields . Hence,
See also: Heaviside cover-up method. Over the complex numbers, suppose f(x) is a rational proper fraction, and can be decomposed into
Letthen according to the uniqueness of Laurent series, aij is the coefficient of the term in the Laurent expansion of gij(x) about the point xi, i.e., its residue
This is given directly by the formulaor in the special case when xi is a simple root,when
Partial fractions are used in real-variable integral calculus to find real-valued antiderivatives of rational functions. Partial fraction decomposition of real rational functions is also used to find their Inverse Laplace transforms. For applications of partial fraction decomposition over the reals, see
Let
f(x)
p(x)
q(x) ≠ 0
By dividing both the numerator and the denominator by the leading coefficient of
q(x)
q(x)
where
a1,...,am
b1,...,bn
c1,...,cn
2 | |
b | |
i |
-4ci<0
j1,...,jm
k1,...,kn
(x-ai)
q(x)
q(x)
(
2 | |
x | |
i |
+bix+ci)
q(x)
q(x)
Then the partial fraction decomposition of
f(x)
Here, P(x) is a (possibly zero) polynomial, and the Air, Bir, and Cir are real constants. There are a number of ways the constants can be found.
The most straightforward method is to multiply through by the common denominator q(x). We then obtain an equation of polynomials whose left-hand side is simply p(x) and whose right-hand side has coefficients which are linear expressions of the constants Air, Bir, and Cir. Since two polynomials are equal if and only if their corresponding coefficients are equal, we can equate the coefficients of like terms. In this way, a system of linear equations is obtained which always has a unique solution. This solution can be found using any of the standard methods of linear algebra. It can also be found with limits (see Example 5).
Here, the denominator splits into two distinct linear factors:
so we have the partial fraction decomposition
Multiplying through by the denominator on the left-hand side gives us the polynomial identity
Substituting x = −3 into this equation gives A = −1/4, and substituting x = 1 gives B = 1/4, so that
After long division, we have
The factor x2 − 4x + 8 is irreducible over the reals, as its discriminant is negative. Thus the partial fraction decomposition over the reals has the shape
Multiplying through by x3 − 4x2 + 8x, we have the polynomial identity
Taking x = 0, we see that 16 = 8A, so A = 2. Comparing the x2 coefficients, we see that 4 = A + B = 2 + B, so B = 2. Comparing linear coefficients, we see that −8 = −4A + C = −8 + C, so C = 0. Altogether,
The fraction can be completely decomposed using complex numbers. According to the fundamental theorem of algebra every complex polynomial of degree n has n (complex) roots (some of which can be repeated). The second fraction can be decomposed to:
Multiplying through by the denominator gives:
Equating the coefficients of and the constant (with respect to) coefficients of both sides of this equation, one gets a system of two linear equations in and, whose solution is
Thus we have a complete decomposition:
One may also compute directly and with the residue method (see also example 4 below).
This example illustrates almost all the "tricks" we might need to use, short of consulting a computer algebra system.
After long division and factoring the denominator, we have
The partial fraction decomposition takes the form
Multiplying through by the denominator on the left-hand side we have the polynomial identity
Now we use different values of x to compute the coefficients:
Solving this we have:
Using these values we can write:
We compare the coefficients of x6 and x5 on both side and we have:
Therefore:
which gives us B = 0. Thus the partial fraction decomposition is given by:
Alternatively, instead of expanding, one can obtain other linear dependences on the coefficients computing some derivatives at
x=1,\imath
that is 8 = 4B + 8 so B = 0.
Thus, f(z) can be decomposed into rational functions whose denominators are z+1, z−1, z+i, z−i. Since each term is of power one, −1, 1, −i and i are simple poles.
Hence, the residues associated with each pole, given byare respectively, and
Limits can be used to find a partial fraction decomposition.[4] Consider the following example:
First, factor the denominator which determines the decomposition:
Multiplying everything by
x-1
x\to1
On the other hand,
and thus:
Multiplying by and taking the limit when
x\toinfty
and
This implies and so
B=-
1 | |
3 |
For, we get
-1=-A+C,
C=-\tfrac{2}{3}
Putting everything together, we get the decomposition
Suppose we have the indefinite integral:
Before performing decomposition, it is obvious we must perform polynomial long division and factor the denominator. Doing this would result in:
Upon this, we may now perform partial fraction decomposition.
so:.Upon substituting our values, in this case, where x=1 to solve for B and x=-2 to solve for A, we will result in:
Plugging all of this back into our integral allows us to find the answer:
The partial fraction decomposition of a rational function can be related to Taylor's theorem as follows. Let
be real or complex polynomials assume that
satisfies
Also define
Then we have
if, and only if, each polynomial
Ai(x)
\tfrac{P}{Qi}
\nui-1
λi
Taylor's theorem (in the real or complex case) then provides a proof of the existence and uniqueness of the partial fraction decomposition, and a characterization of the coefficients.
The above partial fraction decomposition implies, for each 1 ≤ i ≤ r, a polynomial expansion
so
Ai
\tfrac{P}{Qi}
\nui-1
\degAi<\nui
Conversely, if the
Ai
λi
which implies that the polynomial
P-QiAi
\nui | |
(x-λ | |
i) |
.
For
j ≠ i,QjAj
\nui | |
(x-λ | |
i) |
is divisible by
Q
we then have
and we find the partial fraction decomposition dividing by
Q
The idea of partial fractions can be generalized to other integral domains, say the ring of integers where prime numbers take the role of irreducible denominators. For example: