Parts-per notation explained

In science and engineering, the parts-per notation is a set of pseudo-units to describe small values of miscellaneous dimensionless quantities, e.g. mole fraction or mass fraction. Since these fractions are quantity-per-quantity measures, they are pure numbers with no associated units of measurement. Commonly used are parts-per-million (ppm,), parts-per-billion (ppb,), parts-per-trillion (ppt,) and parts-per-quadrillion (ppq,). This notation is not part of the International System of Units (SI) system and its meaning is ambiguous.

Applications

Parts-per notation is often used describing dilute solutions in chemistry, for instance, the relative abundance of dissolved minerals or pollutants in water. The quantity "1 ppm" can be used for a mass fraction if a water-borne pollutant is present at one-millionth of a gram per gram of sample solution. When working with aqueous solutions, it is common to assume that the density of water is 1.00 g/mL. Therefore, it is common to equate 1 kilogram of water with 1 L of water. Consequently, 1 ppm corresponds to 1 mg/L and 1 ppb corresponds to 1 μg/L.

Similarly, parts-per notation is used also in physics and engineering to express the value of various proportional phenomena. For instance, a special metal alloy might expand 1.2 micrometers per meter of length for every degree Celsius and this would be expressed as Parts-per notation is also employed to denote the change, stability, or uncertainty in measurements. For instance, the accuracy of land-survey distance measurements when using a laser rangefinder might be 1 millimeter per kilometer of distance; this could be expressed as "Accuracy = 1 ppm."

Parts-per notations are all dimensionless quantities: in mathematical expressions, the units of measurement always cancel. In fractions like "2 nanometers per meter" so the quotients are pure-number coefficients with positive values less than or equal to 1. When parts-per notations, including the percent symbol (%), are used in regular prose (as opposed to mathematical expressions), they are still pure-number dimensionless quantities. However, they generally take the literal "parts per" meaning of a comparative ratio (e.g. "2 ppb" would generally be interpreted as "two parts in a billion parts").[1]

Parts-per notations may be expressed in terms of any unit of the same measure. For instance, the expansion coefficient of some brass alloy, may be expressed as 18.7 (μm/m)/°C, or as 18.7 (μ in/in)/°C; the numeric value representing a relative proportion does not change with the adoption of a different unit of length.Similarly, a metering pump that injects a trace chemical into the main process line at the proportional flow rate is doing so at a rate that may be expressed in a variety of volumetric units, including 125 cm3/m3, etc.

In nuclear magnetic resonance spectroscopy (NMR), chemical shift is usually expressed in ppm. It represents the difference of a measured frequency in parts per million from the reference frequency. The reference frequency depends on the instrument's magnetic field and the element being measured. It is usually expressed in MHz. Typical chemical shifts are rarely more than a few hundred Hz from the reference frequency, so chemical shifts are conveniently expressed in ppm (Hz/MHz). Parts-per notation gives a dimensionless quantity that does not depend on the instrument's field strength.

Parts-per expressions

1 of →
= ⭨
of ↓  
per
cent
(%)
per
mille
(‰)
per
10,000
(‱)
per
100,000
(pcm)
per
million
(ppm)
per
billion
(ppb)
%10.10.010.0010.0001
1010.10.010.001
1001010.10.01
pcm1,0001001010.10.0001
ppm10,0001,0001001010.001
ppb10,0001,0001

Criticism

Although the International Bureau of Weights and Measures (an international standards organization known also by its French-language initials BIPM) recognizes the use of parts-per notation, it is not formally part of the International System of Units (SI). Note that although "percent" (%) is not formally part of the SI, both the BIPM and the International Organization for Standardization (ISO) take the position that "in mathematical expressions, the internationally recognized symbol % (percent) may be used with the SI to represent the number 0.01" for dimensionless quantities.[4] According to IUPAP, "a continued source of annoyance to unit purists has been the continued use of percent, ppm, ppb, and ppt".[5] Although SI-compliant expressions should be used as an alternative, the parts-per notation remains nevertheless widely used in technical disciplines. The main problems with the parts-per notation are set out below.

Long and short scales

See main article: Long and short scales. Because the named numbers starting with a "billion" have different values in different countries, the BIPM suggests avoiding the use of "ppb" and "ppt" to prevent misunderstanding. The U.S. National Institute of Standards and Technology (NIST) takes the stringent position, stating that "the language-dependent terms [...] are not acceptable for use with the SI to express the values of quantities".[6]

Thousand vs. trillion

Although "ppt" usually means "parts per trillion", it occasionally means "parts per thousand". Unless the meaning of "ppt" is defined explicitly, it has to be determined from the context.

Mass fraction vs. mole fraction vs. volume fraction

Another problem of the parts-per notation is that it may refer to mass fraction, mole fraction or volume fraction. Since it is usually not stated which quantity is used, it is better to write the units out, such as kg/kg, mol/mol or m3/m3, even though they are all dimensionless.[7] The difference is quite significant when dealing with gases, and it is very important to specify which quantity is being used. For example, the conversion factor between a mass fraction of 1 ppb and a mole fraction of 1 ppb is about 4.7 for the greenhouse gas CFC-11 in air. For volume fraction, the suffix "V" or "v" is sometimes appended to the parts-per notation (e.g. ppmV, ppbv, pptv).[8] [9] However, ppbv and pptv are also often used for mole fractions (which is identical to volume fraction only for ideal gases).

To distinguish the mass fraction from volume fraction or mole fraction, the letter "w" (standing for "weight") is sometimes added to the abbreviation (e.g. ppmw, ppbw).[10]

The usage of the parts-per notation is generally quite fixed within each specific branch of science, but often in a way that is inconsistent with its usage in other branches, leading some researchers to assume that their own usage (mass/mass, mol/mol, volume/volume, mass/volume, or others) is correct and that other usages are incorrect. This assumption sometimes leads them to not specify the details of their own usage in their publications, and others may therefore misinterpret their results. For example, electrochemists often use volume/volume, while chemical engineers may use mass/mass as well as volume/volume, while chemists, the field of occupational safety and the field of permissible exposure limit (e.g. permitted gas exposure limit in air) may use mass/volume. Unfortunatelly, many academic publications of otherwise excellent level fail to specify their use of the parts-per notation, which irritates some readers, especially those who are not experts in the particular fields in those publications, because parts-per-notation, without specifying what it stands for, can mean anything.

SI-compliant expressions

SI-compliant units that can be used as alternatives are shown in the chart below. Expressions that the BIPM explicitly does not recognize as being suitable for denoting dimensionless quantities with the SI are marked with

!.
Notations for dimensionless quantities
MeasureSI
units
Named
parts-per ratio
(short scale)
Parts-per
abbreviation
or symbol
Value in
scientific
notation
A strain of...2 cm/m2 parts per hundred    2%[11] 2 × 10−2
A sensitivity of...2 mV/V2 parts per thousand2 ‰ 2 × 10−3
A sensitivity of...0.2 mV/V2 parts per ten thousand2 ‱ 2 × 10−4
A sensitivity of...2 μV/V2 parts per million2 ppm2 × 10−6
A sensitivity of...2 nV/V2 parts per billion 2 ppb 2 × 10−9
A sensitivity of...2 pV/V2 parts per trillion 2 ppt 2 × 10−12
A mass fraction of...2 mg/kg2 parts per million2 ppm2 × 10−6
A mass fraction of...2 μg/kg<--NOTE TO EDITORS: SI convention is to use the base unit kilogram in formulas and equalities. However, whenever an SI prefix, like milli (m) or micro (μ), is used with the unit of mass, the unit gram (symbol g) is used. This results in a mix of units, such as mg (a thousandth of a gram) over a kilogram (a thousand grams). Thus, one microgram divided by one kilogram is one ppb.-->2 parts per billion 2 ppb 2 × 10−9
A mass fraction of...2 ng/kg2 parts per trillion 2 ppt 2 × 10−12
A mass fraction of...2 pg/kg2 parts per quadrillion 2 ppq 2 × 10−15
A volume fraction of...5.2 μL/L5.2 parts per million5.2 ppm5.2 × 10−6
A mole fraction of...5.24 μmol/mol5.24 parts per million5.24 ppm5.24 × 10−6
A mole fraction of...5.24 nmol/mol5.24 parts per billion 5.24 ppb 5.24 × 10−9
A mole fraction of...5.24 pmol/mol5.24 parts per trillion 5.24 ppt 5.24 × 10−12
A stability of...1 (μA/A)/min1 part per million per minute1 ppm/min1 × 10−6/min
A change of...5 nΩ/Ω5 parts per billion 5 ppb 5 × 10−9
An uncertainty of...9 μg/kg9 parts per billion 9 ppb 9 × 10−9
A shift of...1 nm/m1 part per billion 1 ppb 1 × 10−9
A strain of...1 μm/m1 part per million1 ppm1 × 10−6
A temperature coefficient of...0.3 (μHz/Hz)/°C0.3 part per million per °C0.3 ppm/°C0.3 × 10−6/°C
A frequency change of...0.35 × 10−9 ƒ0.35 part per billion 0.35 ppb 0.35 × 10−9

Note that the notations in the "SI units" column above are for the most part dimensionless quantities; that is, the units of measurement factor out in expressions like "1 nm/m" (1 nm/m =1 × 10−9) so the ratios are pure-number coefficients with values less than 1.

Uno (proposed dimensionless unit)

Because of the cumbersome nature of expressing certain dimensionless quantities per SI guidelines, the International Union of Pure and Applied Physics (IUPAP) in 1999 proposed the adoption of the special name "uno" (symbol: U) to represent the number 1 in dimensionless quantities. In 2004, a report to the International Committee for Weights and Measures (CIPM) stated that the response to the proposal of the uno "had been almost entirely negative", and the principal proponent "recommended dropping the idea".[12] To date, the uno has not been adopted by any standards organization.

See also

External links

Notes and References

  1. Web site: Stating values of dimensionless quantities, or quantities of dimension one . § 5.3.7 . BIPM .
  2. Web site: Basis Points (BPS). Corporate Finance Institute.
  3. Measurements of dioxin are routinely made at the sub-ppq level. The U.S. Environmental Protection Agency (EPA) currently sets a hard limit of 30 ppq for dioxin in drinking water but once recommended a voluntary limit of 0.013 ppq. Also, radioactive contaminants in drinking water, which are quantified by measuring their radiation, are often reported in terms of ppq; 0.013 ppq is equivalent to the thickness of a sheet of paper versus a journey of trips around the world. 
  4. Quantities and units. Part 0: General principles, ISO 31-0:1992.
  5. Web site: Report on Recent Committee Activities on Behalf of IUPAP to the 1999 IUPAP General Assembly . Brian W. . Petley . September 1998 . 2017-08-15 . live . https://web.archive.org/web/20170815113700/http://archive.iupap.org/commissions/interunion/iu14/ga-99.html . 2017-08-15.
  6. NIST: Rules and Style Conventions for Expressing Values of Quantities: 7.10.3 ppm, ppb, and ppt.
  7. Schwartz . S.E. . Warneck . P. . Units for use in atmospheric chemistry (IUPAC Recommendations 1995) . Pure and Applied Chemistry . 1995 . 67 . 8–9 . 1377–1406 . 10.1351/pac199567081377. 7029702.
  8. Web site: EPA on-line tools for site assessment calculation: Indoor air unit Conversion . .
  9. Book: Beychok, Milton R. . 2005 . Air dispersion modeling conversions and formulas . Fundamentals of Stack Gas Dispersion . 4th . Milton R. Beychok . 0964458802 . registration.
  10. Web site: Units . Introduction to green engineering . 2012-08-23 . dmy-all . .
  11. According to BIPM's SI brochure, section 5.3.7, "When [the percent symbol] is used, a space separates the number and the symbol %." This practice has not been well adopted with regard to the % symbol, is contrary to Wikipedia's Manual of Style, and is not observed here.
  12. Web site: Report of the 16th meeting (13–14 May 2004) to the International Committee for Weights and Measures, of the International Bureau of Weights and Measures . Consultative Committee for Units . 13–14 May 2004 . dead . https://web.archive.org/web/20140310054340/http://www.bipm.org/utils/common/pdf/CCU16.pdf . 2014-03-10.