(\mu,\nu,λ)
Differently from cylindrical and rotational parabolic coordinates, but similarly to the related ellipsoidal coordinates, the coordinate surfaces of the paraboloidal coordinate system are not produced by rotating or projecting any two-dimensional orthogonal coordinate system.
The Cartesian coordinates
(x,y,z)
(\mu,\nu,λ)
x2=
4 | |
b-c |
(\mu-b)(b-\nu)(b-λ)
y2=
4 | |
b-c |
(\mu-c)(c-\nu)(λ-c)
z=\mu+\nu+λ-b-c
with
\mu>b>λ>c>\nu>0
Consequently, surfaces of constant
\mu
x2 | |
\mu-b |
+
y2 | |
\mu-c |
=-4(z-\mu)
Similarly, surfaces of constant
\nu
x2 | |
b-\nu |
+
y2 | |
c-\nu |
=4(z-\nu)
whereas surfaces of constant
λ
x2 | |
b-λ |
-
y2 | |
λ-c |
=4(z-λ)
The scale factors for the paraboloidal coordinates
(\mu,\nu,λ)
h\mu=\left[
\left(\mu-\nu\right)\left(\mu-λ\right) | |
\left(\mu-b\right)\left(\mu-c\right) |
\right]1/2
h\nu=\left[
\left(\mu-\nu\right)\left(λ-\nu\right) | |
\left(b-\nu\right)\left(c-\nu\right) |
\right]1/2
hλ=\left[
\left(λ-\nu\right)\left(\mu-λ\right) | |
\left(b-λ\right)\left(λ-c\right) |
\right]1/2
Hence, the infinitesimal volume element is
dV=
(\mu-\nu)(\mu-λ)(λ-\nu) | |
\left[(\mu-b)(\mu-c)(b-\nu)(c-\nu)(b-λ)(λ-c)\right]1/2 |
dλd\mud\nu
Common differential operators can be expressed in the coordinates
(\mu,\nu,λ)
\nabla=\left[
\left(\mu-b\right)\left(\mu-c\right) | |
\left(\mu-\nu\right)\left(\mu-λ\right) |
\right]1/2e\mu
\partial | |
\partial\mu |
+\left[
\left(b-\nu\right)\left(c-\nu\right) | |
\left(\mu-\nu\right)\left(λ-\nu\right) |
\right]1/2e\nu
\partial | |
\partial\nu |
+\left[
\left(b-λ\right)\left(λ-c\right) | |
\left(λ-\nu\right)\left(\mu-λ\right) |
\right]1/2eλ
\partial | |
\partialλ |
and the Laplacian is
\begin{align} \nabla2=&\left[
\left(\mu-b\right)\left(\mu-c\right) | |
\left(\mu-\nu\right)\left(\mu-λ\right) |
\right]1/2
\partial | |
\partial\mu |
\left[(\mu-b)1/2(\mu-c)1/2
\partial | |
\partial\mu |
\right]\ &+\left[
\left(b-\nu\right)\left(c-\nu\right) | |
\left(\mu-\nu\right)\left(λ-\nu\right) |
\right]1/2
\partial | |
\partial\nu |
\left[(b-\nu)1/2(c-\nu)1/2
\partial | |
\partial\nu |
\right]\\ &+\left[
\left(b-λ\right)\left(λ-c\right) | |
\left(λ-\nu\right)\left(\mu-λ\right) |
\right]1/2
\partial | |
\partialλ |
\left[(b-λ)1/2(λ-c)1/2
\partial | |
\partialλ |
\right] \end{align}
Paraboloidal coordinates can be useful for solving certain partial differential equations. For instance, the Laplace equation and Helmholtz equation are both separable in paraboloidal coordinates. Hence, the coordinates can be used to solve these equations in geometries with paraboloidal symmetry, i.e. with boundary conditions specified on sections of paraboloids.
The Helmholtz equation is
(\nabla2+k2)\psi=0
\psi=M(\mu)N(\nu)Λ(λ)
\begin{align} &(\mu-b)(\mu-c)
d2M | |
d\mu2 |
+
1 | |
2 |
\left[2\mu-(b+c)\right]
dM | |
d\mu |
+\left[k2\mu2+\alpha3\mu-\alpha2\right]M=0\\ &(b-\nu)(c-\nu)
d2N | |
d\nu2 |
+
1 | |
2 |
\left[2\nu-(b+c)\right]
dN | |
d\nu |
+\left[k2\nu2+\alpha3\nu-\alpha2\right]N=0\\ &(b-λ)(λ-c)
d2Λ | |
dλ2 |
-
1 | |
2 |
\left[2λ-(b+c)\right]
dΛ | |
dλ |
-\left[k2λ2+\alpha3λ-\alpha2\right]Λ=0\\ \end{align}
where
\alpha2
\alpha3
k=0
Each of the separated equations can be cast in the form of the Baer equation. Direct solution of the equations is difficult, however, in part because the separation constants
\alpha2
\alpha3
Following the above approach, paraboloidal coordinates have been used to solve for the electric field surrounding a conducting paraboloid.