Panarthropoda Explained

Panarthropoda is a proposed animal clade containing the extant phyla Arthropoda, Tardigrada (water bears) and Onychophora (velvet worms). Panarthropods also include extinct marine legged worms known as lobopodians ("Lobopodia"), a paraphyletic group where the last common ancestor and basal members (stem-group) of each extant panarthropod phylum are thought to have risen.[1] [2] [3] [4] However the term "Lobopodia" is sometimes expanded to include tardigrades and onychophorans as well.

Common characteristics of the Panarthropoda include a segmented body, paired ladder-like ventral nervous system, and the presence of paired appendages correlated with body segments.[1] [3]

Taxonomy

Not all studies support the monophyly of Panarthropoda,[5] but most do, including neuroanatomical,[6] phylogenomic[7] and palaeontological[8] [9] [1] studies. At least a close relationship between onychophorans and arthropods is widely agreed upon, but the position of tardigrades is more controversial. Some phylogenomic studies have found tardigrades to be more closely related to nematodes. Traditionally, panarthropods were considered to be closely related to the annelids, grouped together as the Articulata (animals with body segments), but subsequent phylogenomic studies consistently place them closer to cycloneuralians (nematodes, nematomorphs, loriciferans, kinorhynchas & priapulids), grouped together as Ecdysozoa.[10] While annelids are placed among the Spiralia (making them more closely related to mollusks, flatworms and such),[11] having evolved their segmented bodies convergently.[12]

Interrelationship

There are three competing hyphotheses for the interrelationship between the extant panarthropod phyla, each known as Tactopoda (Arthropoda+Tardigrada), Antennopoda (Arthropoda+Onychophora), and the sister relationship between Onychophora and Tardigrada (Lobopodia sensu Smith & Goldstein 2017).[13]

Tactopoda had been supported by mitochondrial gene arrangements,[14] palaeontological[15] [9] and neuroanatomical evidences, specifically the presence of segmented ganglia shared by arthropods and tardigrades.[16] Antennopodia united by the presence of specialized head appendages and deutocerebrum (additional second section of the brain), but subsequent anatomical studies suggest these features were convergently evolved between onychophoran and arthropod lineages.[17] Onychophorans and tardigrades shared some lobopodian traits (e.g. soft cuticle, lobopodous appendages and peripheral nerve roots), but these were generally considered to be plesiomorphies traced back to the last common ancestor of Panarthropoda or Ecdysozoa.[18] [1] While most phylogenomic analyses support the monophyly of Panarthropoda, the results of interrelationship between the three phyla are less correlated - some of them inconsistently placing Tardigrada within Arthropoda,[7] while the others mostly recovering either Antennopoda or Onychophora+Tardigrada.[7] [19] [20]

Within extinct lobopodians, at least Antennacanthopodia are widely accepted as part of the onychophoran stem-group.[21] [9] [22] [23] [24] [18] [25] [26] [1] [27] [28] On the other hand, siberiids (Siberion, Megadictyon and Jianshanopodia) and gilled lobopodians (Pambdelurion and Kerygmachela) represent transitional forms between typical lobopodians and basal arthropods (e.g. Opabinia and Radiodonta).[21] [9] [22] [23] [24] [18] [25] [1] [26] [27] [3] [28] [29] The positions of most other lobopodians (e.g. Hallucigenia and luolishaniids as stem onychophorans[9] [22] [23] [24] [18] [25] [28] or stem panarthropods[26] [27] [29]), including the lobopodian members of tardigrade stem-group (represented by Onychodictyon ferox[18] [25] [28] or Aysheaia[26] [27] [29]) are more controversial.

Sialomorpha, a genus of microinvertebrate discovered in Dominican amber in 2019, is also considered to be a panarthropod. However, due to the unusual combination of tardigrade and mite-like characteristics, its exact placement is uncertain.[30]

See also

Notes and References

  1. Ortega-Hernández . Javier . Janssen . Ralf . Budd . Graham E. . 2017-05-01 . Origin and evolution of the panarthropod head – A palaeobiological and developmental perspective . Arthropod Structure & Development . Evolution of Segmentation . en . 46 . 3 . 354–379 . 10.1016/j.asd.2016.10.011 . 27989966 . 1467-8039. free . 2017ArtSD..46..354O .
  2. Giribet . Gonzalo . Edgecombe . Gregory D. . 2019-06-17 . The Phylogeny and Evolutionary History of Arthropods . Current Biology . English . 29 . 12 . R592–R602 . 10.1016/j.cub.2019.04.057 . 0960-9822 . 31211983. 189926344 . free . 2019CBio...29.R592G .
  3. Chipman . Ariel D. . Edgecombe . Gregory D. . 2019-10-09 . Developing an integrated understanding of the evolution of arthropod segmentation using fossils and evo-devo. Proceedings of the Royal Society B: Biological Sciences . 286 . 1912 . 20191881 . 10.1098/rspb.2019.1881 . 0962-8452 . 6790758 . 31575373.
  4. Edgecombe . Gregory D. . 2020-11-02 . Arthropod origins: Integrating paleontological and molecular evidence . Annual Review of Ecology, Evolution, and Systematics . 51 . 1 . 1–25 . 10.1146/annurev-ecolsys-011720-124437 . 225478171 . 1543-592X.
  5. Dunn . C. W. . Hejnol . A. . Matus . D. Q. . Pang . K. . Browne . W. E. . Smith . S. A. . Seaver . E. . Rouse . G. W. . Obst . M. . Edgecombe . 10.1038/nature06614 . G. D. . Sørensen . M. V. . Haddock . S. H. D. . Steven Haddock . Schmidt-Rhaesa . A. . Okusu . A. . Kristensen . R. M. B. . Wheeler . W. C. . Martindale . M. Q. . Giribet . G. . Broad phylogenomic sampling improves resolution of the animal tree of life . Nature . 452 . 7188 . 745–749 . 10 April 2008 . 18322464 . 2008Natur.452..745D . 4397099 .
  6. Persson. Dennis K.. November 2012. Neuroanatomy of Halobiotus crispae (Eutardigrada: Hypsibiidae): Tardigrade brain structure supports the clade panarthropoda. Journal of Morphology. 273. 11. 1227–1245. 10.1002/jmor.20054. 22806919. 5260983.
  7. Rota-Stabelli . O.. Kayal . E.. Gleeson . D.. Daub . J.. Boore . J. . Telford . M. . Pisani . D. . Blaxter . M.. Lavrov . D.. Ecdysozoan mitogenomics: evidence for a common origin of the legged invertebrates, the Panarthropoda. Genome Biology and Evolution. 2 . 425–440 . 2010 . 20624745. 2998192. 10.1093/gbe/evq030.
  8. 10.1038/ncomms2272 . Cambrian lobopodians and extant onychophorans provide new insights into early cephalization in Panarthropoda . Nature Communications . 2012 . 3 . 1261 . Qiang . Ou . 23232391 . 3535342. 2012NatCo...3.1261O .
  9. Smith . Martin R. . Ortega-Hernández . Javier . 2014 . Hallucigenias onychophoran-like claws and the case for Tactopoda . Nature . 514 . 7522 . 363–366 . 2014Natur.514..363S . 10.1038/nature13576 . 25132546 . 205239797.
  10. Aguinaldo . Anna Marie A. . Turbeville . James M. . Linford. Lawrence S. . Rivera . Maria C.. Garey. James R.. Raff. Rudolf A. . Lake . James A. . 1997 . Evidence for a clade of nematodes, arthropods and other moulting animals . Nature . en . 387 . 6632 . 489–493. 10.1038/387489a0. 9168109 . 1997Natur.387R.489A . 4334033 . 1476-4687.
  11. Adoutte . André . Balavoine . Guillaume . Lartillot . Nicolas . Lespinet . Olivier . Prud'homme . Benjamin . de Rosa . Renaud . 2000-04-25 . The new animal phylogeny: Reliability and implications . Proceedings of the National Academy of Sciences . en . 97 . 9 . 4453–4456 . 10.1073/pnas.97.9.4453 . 0027-8424 . 34321 . 10781043. 2000PNAS...97.4453A . free .
  12. Seaver. Elaine C. . Kaneshige . Lori M. . 2006-01-01 . Expression of 'segmentation' genes during larval and juvenile development in the polychaetes Capitella sp. I and H. elegans . Developmental Biology . en . 289 . 1 . 179–194 . 10.1016/j.ydbio.2005.10.025 . 16330020 . 0012-1606. free .
  13. Smith. Frank W. . Goldstein . Bob . 2017-05-01 . Segmentation in Tardigrada and diversification of segmental patterns in Panarthropoda . Arthropod Structure & Development . Evolution of Segmentation . en . 46 . 3 . 328–340 . 10.1016/j.asd.2016.10.005 . 27725256 . 2017ArtSD..46..328S . 1467-8039.
  14. Ryu . Shi Hyun . Lee . Ji Min . Jang . Kuem-Hee . Choi . Eun Hwa . Park . Shin Ju . Chang . Cheon Young . Kim . Won . Hwang . Ui Wook . 2007-12-31 . Partial mitochondrial gene arrangements support a close relationship between Tardigrada and Arthropoda . Molecules and Cells . 24 . 3 . 351–357 . 10.1016/S1016-8478(23)07350-8 . 1016-8478 . 18182850. free .
  15. Budd. Graham E. . 2001-01-01 . Tardigrades as 'Stem-Group Arthropods': The Evidence from the Cambrian Fauna . Zoologischer Anzeiger - A Journal of Comparative Zoology . en . 240 . 3 . 265–279 . 10.1078/0044-5231-00034 . 2001ZooAn.240..265B . 0044-5231.
  16. Mayer . Georg . Martin . Christine . Rüdiger. Jan . Kauschke . Susann . Stevenson . Paul A. . Poprawa . Izabela . Hohberg . Karin . Schill . Ralph O. . Pflüger. Hans-Joachim . Schlegel . Martin . 2013-10-24 . Selective neuronal staining in tardigrades and onychophorans provides insights into the evolution of segmental ganglia in panarthropods . BMC Evolutionary Biology . 13 . 1 . 230 . 10.1186/1471-2148-13-230 . 1471-2148 . 4015553 . 24152256 . free . 2013BMCEE..13..230M .
  17. Martin . Christine . Mayer . Georg . 2015-08-25 . Insights into the segmental identity of post-oral commissures and pharyngeal nerves in Onychophora based on retrograde fills . BMC Neuroscience . 16 . 1 . 53 . 10.1186/s12868-015-0191-1 . 1471-2202 . 4549126 . 26303946 . free .
  18. Yang . Jie . Ortega-Hernández . Javier . Butterfield . Nicholas J. . Liu . Yu . Boyan . George S. . Hou . Jin-bo . Lan . Tian . Zhang . Xi-guang . 2016-03-15 . Fuxianhuiid ventral nerve cord and early nervous system evolution in Panarthropoda . Proceedings of the National Academy of Sciences . en . 113 . 11 . 2988–2993 . 10.1073/pnas.1522434113 . 0027-8424 . 4801254 . 26933218. 2016PNAS..113.2988Y . free .
  19. Rota-Stabelli . Omar . Daley . Allison C. . Pisani . Davide . 2013-03-04 . Molecular Timetrees Reveal a Cambrian Colonization of Land and a New Scenario for Ecdysozoan Evolution. Current Biology . English . 23 . 5 . 392–398 . 10.1016/j.cub.2013.01.026 . 0960-9822 . 23375891. 2510415 . free . 2013CBio...23..392R .
  20. Marlétaz . Ferdinand . Peijnenburg . Katja T.C.A. . Goto . Taichiro . Satoh . Noriyuki . Rokhsar . Daniel S. . 2019-01-21 . A New Spiralian Phylogeny Places the Enigmatic Arrow Worms among Gnathiferans . Current Biology . English . 29 . 2 . 312–318.e3 . 10.1016/j.cub.2018.11.042 . 0960-9822 . 30639106. 58562919 . free . 2019CBio...29E.312M .
  21. Ma. Xiaoya. Edgecombe. Gregory D.. Legg. David A.. Hou. Xianguang. 2013. The morphology and phylogenetic position of the Cambrian lobopodian Diania cactiformis. Journal of Systematic Palaeontology. 12. 4. 445–457. 10.1080/14772019.2013.770418. 220463025. 1477-2019.
  22. Smith. Martin R.. Caron. Jean-Bernard. 2015. Hallucigenias head and the pharyngeal armature of early ecdysozoans. Nature. en. 523. 7558. 75–78. 10.1038/nature14573. 26106857. 2015Natur.523...75S. 205244325. 1476-4687.
  23. Yang. Jie. Ortega-Hernández. Javier. Gerber. Sylvain. Butterfield. Nicholas J.. Hou. Jin-bo. Lan. Tian. Zhang. Xi-guang. 2015-07-14. A superarmored lobopodian from the Cambrian of China and early disparity in the evolution of Onychophora. Proceedings of the National Academy of Sciences of the United States of America. 112. 28. 8678–8683. 10.1073/pnas.1505596112. 0027-8424. 4507230. 26124122. 2015PNAS..112.8678Y. free.
  24. Murdock. Duncan J. E.. Gabbott. Sarah E.. Purnell. Mark A.. 2016-01-22. The impact of taphonomic data on phylogenetic resolution: Helenodora inopinata (Carboniferous, Mazon Creek Lagerstätte) and the onychophoran stem lineage. BMC Evolutionary Biology. 16. 1 . 19. 10.1186/s12862-016-0582-7. 1471-2148. 4722706. 26801389 . free . 2016BMCEE..16...19M .
  25. Zhang. Xi-Guang. Smith. Martin R.. Yang. Jie. Hou. Jin-Bo. 2016. Onychophoran-like musculature in a phosphatized Cambrian lobopodian. Biology Letters. 12. 9. 20160492. 10.1098/rsbl.2016.0492. 1744-9561. 5046927. 27677816.
  26. Caron. Jean-Bernard. Aria. Cédric. 2017-01-31. Cambrian suspension-feeding lobopodians and the early radiation of panarthropods. BMC Evolutionary Biology. 17. 1. 29. 10.1186/s12862-016-0858-y. 1471-2148. 5282736. 28137244 . free . 2017BMCEE..17...29C .
  27. Siveter. Derek J.. Briggs. Derek E. G.. Siveter. David J.. Sutton. Mark D.. Legg. David. 2018-08-08. A three-dimensionally preserved lobopodian from the Herefordshire (Silurian) Lagerstätte, UK. Royal Society Open Science. 5. 8. 172101. 10.1098/rsos.172101. 30224988. 6124121.
  28. Howard. Richard J.. Hou. Xianguang. Edgecombe. Gregory D.. Salge. Tobias. Shi. Xiaomei. Ma. Xiaoya. 2020-04-20. A Tube-Dwelling Early Cambrian Lobopodian. Current Biology. English. 30. 8. 1529–1536.e2. 10.1016/j.cub.2020.01.075. 0960-9822. 32109391. 211542458. free. 2020CBio...30E1529H .
  29. Caron. Jean-Bernard. Aria. Cédric. 2020. The Collins' monster, a spinous suspension-feeding lobopodian from the Cambrian Burgess Shale of British Columbia. Palaeontology. en. 63. 6. 979–994. 10.1111/pala.12499. 2020Palgy..63..979C . 225593728. 1475-4983.
  30. Poinar . George . Nelson . Diane R. . 2019 . A new microinvertebrate with features of mites and tardigrades in Dominican amber . Invertebrate Biology . 138 . 4 . e12265 . 10.1111/ivb.12265 . 204157733 . 1744-7410.