Palmatine Explained

Palmatine is a protoberberine alkaloid found in several plants including Phellodendron amurense, Coptis Chinensis[1] (Rhizoma coptidis, chinese goldthread) and Corydalis yanhusuo,[2] Tinospora cordifolia[3] (gurjo, heart-leaved moonseed), Tinospora sagittata,[4] Phellodendron amurense[5] (amur cork tree), Stephania yunnanensis.[6]

It is the major component of the protoberberine extract from Enantia chlorantha.[7]

It has been studied for its potential use in the treatment of jaundice, dysentery, hypertension, inflammation, and liver-related diseases.[8] This compound also has weak in vitro activity against flavivirus.[9]

Pharmacology

Neuroprotective activity

Palmatine can be used to treat Alzheimer’s disease, mainly by inhibiting the activity of acetylcholinesterase (AChE), butyrylcholinesterase (BChE) and neuraminidase-1 (NA-1). It was found, that the positively charged nitrogen on palmatine binds in the gorge of active sire of AChE.[10]

Research show that palmatine had antidepressant effect. It was achieved by regulating brain catalase levels, monoamine oxidase-A (MAO-A) activity, lipid peroxidation, plasma nitrite and corticosterone levels.[11]

Regulating blood lipid activity

Palmatine achieved hypoglycemic effects by inducing insulin release and insulin-mimicking activity.[12] [13] In addition, studies found that palmatine also inhibited the activity of lens aldose reductase,[14] sucrase and maltase.[15] In vivo research showed that palmatine reduced serum total cholesterol (TC) and triglycerides (TG) and increased serum high-density lipoprotein cholesterol.[16]

Anticancer activity

Research showed that palmatine had broad anti-cancer activity. Palmatine had significant growth inhibitory effects on seven human cancer cell lines: 7701QGY, SMMC7721, HepG2, CEM, CEM/VCR, K III and Lewis.[17] In addition, palmatine also had anti-cancer activity on MCF-7, U251, KB,[18] CHOK-1, HT-29 and SiHacell lines.[19] Palmatine induced apoptosis in human skin epithelial carcinoma cells (A431) in a concentration- and time-dependent manner via damaging severely to DNA and inhibiting the activity of Bcl-2 protein.[20] [21] [22] In addition, palmatine can inhibit the proliferation and infiltration of cancer cells.

Antibacterial and antiviral activity

Palmitine has inhibitory effect on Gram-positive bacteria which is significantly stronger than that on Gram-negative bacteria,[23] and 9-O-substituted palmatine derivatives exhibited stronger antibacterial activity.[24] [25]

Anti-inflammatory activity

Studies have shown that palmatine can decrease the production of pro-inflammatory factors and increase the production of anti-inflammatory factors.[26]

Other pharmacological activity

Studies have shown that palmatine chave antioxidant activity,[27] [28] had a protective effect on gastric ulcer,[29] derivatives of palmatine were more effective against ulcerative colitis, including low cytotoxicity to intestinal epithelial cells.[30] In addition, palmatine might have the antiarrhythmic effect,[31] and provideprotection from myocardial ischemia-reperfusion injury.[32]

Toxicity

A large number of studies have shown that palmatine has a complex effect on the metabolism of enzymes in the liver, and that palmatine has significant DNA toxicity.[33] However, some 9-O-substituted palmatine derivatives exhibited less toxic than palmatine.[34] In addition, palmatine had higher affinity to nucleic acids than serum proteins, which make them suitable candidates for delivery by serum proteins.[35]

See also

References

  1. Yang. Seong Baek. Kim. Eun Hee. Kim. Seung Hee. Kim. Young Hun. Oh. Weontae. Lee. Jin-Tae. Jang. Young-Ah. Sabina. Yeasmin. Ji. Byung Chul. Yeum. Jeong Hyun. 2018-09-17. Electrospinning Fabrication of Poly(vinyl alcohol)/Coptis chinensis Extract Nanofibers for Antimicrobial Exploits. Nanomaterials. 8. 9. 734. 10.3390/nano8090734. 2079-4991. 6164458. 30227671. free.
  2. Zhang. Qian. Chen. Cen. Wang. Feng-Qin. Li. Chun-Hong. Zhang. Qi-Hui. Hu. Yuan-Jia. Xia. Zhi-Ning. Yang. Feng-Qing. 2016-12-01. Simultaneous screening and analysis of antiplatelet aggregation active alkaloids from Rhizoma Corydalis. Pharmaceutical Biology. 54. 12. 3113–3120. 10.1080/13880209.2016.1211714. 1388-0209. 27558975. free.
  3. Kumar. Peeyush. Srivastava. Vartika. Chaturvedi. Rakhi. Sundar. Durai. Bisaria. V. S.. 2017-08-01. Elicitor enhanced production of protoberberine alkaloids from in vitro cell suspension cultures of Tinospora cordifolia (Willd.) Miers ex Hook. F. & Thoms. Plant Cell, Tissue and Organ Culture . en. 130. 2. 417–426. 10.1007/s11240-017-1237-0. 41951538. 1573-5044.
  4. Rong. Qian. Xu. Min. Dong. Qi. Zhang. Yuli. Li. Yinglun. Ye. Gang. Zhao. Ling. 2016-08-30. In vitro and in vivo bactericidal activity of Tinospora sagittata (Oliv.) Gagnep. var. craveniana (S.Y.Hu) Lo and its main effective component, palmatine, against porcine Helicobacter pylori. BMC Complementary and Alternative Medicine. 16. 1. 331. 10.1186/s12906-016-1310-y. 1472-6882. 5006617. 27576439 . free .
  5. Sun. Minglong. Xu. Lijiao. Peng. Yingli. Liu. Tong. Zhang. Yuhong. Zhou. Zhiqiang. 2016-04-01. Multiscale analysis of the contents of palmatine in the Nature populations of Phellodendron amurense in Northeast China. Journal of Forestry Research. en. 27. 2. 265–272. 10.1007/s11676-015-0200-3. 15369649. 1993-0607.
  6. Xin. Aiyi. Zhang. Yaming. Zhang. Yanxia. Di. Duolong. Liu. Junxi. October 2018. Development of an HPLC-DAD method for the determination of five alkaloids in Stephania yunnanensis Lo and in rat plasma after oral dose of Stephania yunnanensis Lo extracts. Biomedical Chromatography. 32. 10. e4292. 10.1002/bmc.4292. 1099-0801. 29782649. 29167917 .
  7. Virtanen P., Njimi T., Ekotto Mengata D.: Clinical trials of hepatitis cure with protoberberine alkaloids of Enantia Chlorantha (abstract)Eur.J.Clin.Pharmacol.36: A123, 1989b
  8. Bhadra K, Kumar GS . Therapeutic potential of nucleic acid-binding isoquinoline alkaloids: Binding aspects and implications for drug design . Medicinal Research Reviews . January 2010 . 20077560 . 10.1002/med.20202 . 821–862. 31. 6 . 206250975 . free .
  9. Jia F., Zou G., Fan J., Yuan Z."Identification of palmatine as an inhibitor of West Nile virus" Archives of Virology 2010 155:8 (1325-1329)
  10. 2007-04-10. Acetylcholinesterase inhibitors from plants. Phytomedicine. en. 14. 4. 289–300. 10.1016/j.phymed.2007.02.002. 0944-7113. Mukherjee. Pulok K.. Kumar. Venkatesan. Mal. Mainak. Houghton. Peter J.. 17346955.
  11. 2014-02-01. Behavioral and biochemical evidences for antidepressant-like activity of palmatine in mice subjected to chronic unpredictable mild stress. Pharmacological Reports. en. 66. 1. 1–9. 10.1016/j.pharep.2013.06.001. 1734-1140. Dhingra. Dinesh. Bhankher. Arun. 24905299. 14391622 .
  12. Patel. Mayurkumar B.. Mishra. Shrihari. September 2011. Hypoglycemic activity of alkaloidal fraction of Tinospora cordifolia. Phytomedicine. 18. 12. 1045–1052. 10.1016/j.phymed.2011.05.006. 21665451. 0944-7113.
  13. Ma. Bingxin. Tong. Jing. Zhou. Gao. Mo. Qigui. He. Jingsheng. Wang. Youwei. March 2016. Coptis chinensis inflorescence ameliorates hyperglycaemia in 3T3-L1 preadipocyte and streptozotocin-induced diabetic mice. Journal of Functional Foods. 21. 455–462. 10.1016/j.jff.2015.12.021. 1756-4646.
  14. Patel. Mayurkumar B.. Mishra. Shrihari. 2012-02-01. Isoquinoline Alkaloids from Tinospora cordifolia Inhibit Rat Lens Aldose Reductase. Phytotherapy Research. 26. 9. 1342–1347. 10.1002/ptr.3721. 22294283. 34663821. 0951-418X.
  15. Patel. Mayurkumar B.. Mishra. Shrihari M.. January 2012. Magnoflorine from Tinospora cordifolia stem inhibits α-glucosidase and is antiglycemic in rats. Journal of Functional Foods. 4. 1. 79–86. 10.1016/j.jff.2011.08.002. 1756-4646. free.
  16. Ma. Hang. Hu. Yinran. Zou. Zongyao. Feng. Min. Ye. Xiaoli. Li. Xuegang. 2016-04-04. Antihyperglycemia and Antihyperlipidemia Effect of Protoberberine Alkaloids From Rhizoma Coptidis in HepG2 Cell and Diabetic KK-Ay Mice. Drug Development Research. 77. 4. 163–170. 10.1002/ddr.21302. 27045983. 31823923. 0272-4391.
  17. Zhang. Lei. Li. Jingjing. Ma. Fei. Yao. Shining. Li. Naisan. Wang. Jing. Wang. Yongbin. Wang. Xiuzhen. Yao. Qizheng. 2012-09-25. Synthesis and Cytotoxicity Evaluation of 13-n-Alkyl Berberine and Palmatine Analogues as Anticancer Agents. Molecules. 17. 10. 11294–11302. 10.3390/molecules171011294. 23011273. 6268624. 1420-3049. free.
  18. Costa. Emmanoel Vilaça. Cruz. Pedro Ernesto O. da. Pinheiro. Maria Lúcia B.. Marques. Francisco A.. Ruiz. Ana Lúcia T. G.. Marchetti. Gabriela M.. Carvalho. João Ernesto de. Barison. Andersson. Maia. Beatriz Helena L. N. S.. 2013. Aporphine and Tetrahydroprotoberberine Alkaloids from the Leaves ofGuatteria friesiana(Annonaceae) and their Cytotoxic Activities. Journal of the Brazilian Chemical Society. 10.5935/0103-5053.20130103. 0103-5053. free.
  19. Bala. Manju. Pratap. Kunal. Verma. Praveen Kumar. Singh. Bikram. Padwad. Yogendra. December 2015. Validation of ethnomedicinal potential of Tinospora cordifolia for anticancer and immunomodulatory activities and quantification of bioactive molecules by HPTLC. Journal of Ethnopharmacology. 175. 131–137. 10.1016/j.jep.2015.08.001. 26253577. 0378-8741.
  20. Ali. Daoud. Ali. Huma. 2014-07-03. Assessment of DNA damage and cytotoxicity of palmatine on human skin epithelial carcinoma cells. Toxicological & Environmental Chemistry. 96. 6. 941–950. 10.1080/02772248.2014.987510. 84213943. 0277-2248.
  21. Wu. Juan. Xiao. Qicai. Zhang. Na. Xue. Changhu. Leung. Albert Wingnang. Zhang. Hongwei. Tang. Qing-Juan. Xu. Chuanshan. September 2016. Palmatine hydrochloride mediated photodynamic inactivation of breast cancer MCF-7 cells: Effectiveness and mechanism of action. Photodiagnosis and Photodynamic Therapy. 15. 133–138. 10.1016/j.pdpdt.2016.07.006. 27444887. 1572-1000.
  22. He. Qiyuan. Zhang. Hua. 2020. Towards the Scalable vdW Heterostructure Array. Acta Physico-Chimica Sinica. 2003075–0. 10.3866/pku.whxb202003075. 1000-6818. free.
  23. Deng. Yecheng. Zhang. Ming. Luo. Haiyu. May 2012. Identification and antimicrobial activity of two alkaloids from traditional Chinese medicinal plant Tinospora capillipes. Industrial Crops and Products. 37. 1. 298–302. 10.1016/j.indcrop.2011.12.006. 0926-6690.
  24. Li. ZC. Kong. XB. Mai. WP. Sun. GC. Zhao. SZ. 2015. Synthesis and antimicrobial activity of 9-o-substituted palmatine derivatives. Indian Journal of Pharmaceutical Sciences. 77. 2. 196–201. 10.4103/0250-474x.156588. 26009653. 0250-474X. 4442469 . free .
  25. Song. Li. Zhang. Hai-Jing. Deng. An-Jun. Li. Jia. Li. Xiang. Li. Zhi-Hong. Zhang. Zhi-Hui. Wu. Lian-Qiu. Wang. Sheng-Qi. Qin. Hai-Lin. May 2018. Syntheses and structure-activity relationships on antibacterial and anti-ulcerative colitis properties of quaternary 13-substituted palmatines and 8-oxo-13-substituted dihydropalmatines. Bioorganic & Medicinal Chemistry. 26. 9. 2586–2598. 10.1016/j.bmc.2018.04.025. 29680749. 0968-0896.
  26. Yan. Baoqi. Wang. Dongsheng. Dong. Shuwei. Cheng. Zhangrui. Na. Lidong. Sang. Mengqi. Yang. Hongzao. Yang. Zhiqiang. Zhang. Shidong. Yan. Zuoting. April 2017. Palmatine inhibits TRIF-dependent NF-κB pathway against inflammation induced by LPS in goat endometrial epithelial cells. International Immunopharmacology. 45. 194–200. 10.1016/j.intimp.2017.02.004. 28236763. 29087348. 1567-5769.
  27. Ma. Bingxin. Zhu. Ling. Zang. Xiaoyan. Chen. Yuxin. Li. Dong. Wang. Youwei. October 2013. Coptis chinensis inflorescence and its main alkaloids protect against ultraviolet-B-induced oxidative damage. Journal of Functional Foods. 5. 4. 1665–1672. 10.1016/j.jff.2013.07.010. 1756-4646.
  28. Shia. Chi-Sheng. Hou. Yu-Chi. Juang. Shin-Hun. Tsai. Shang-Yuan. Hsieh. Pei-Hsun. Ho. Lu-Ching. Chao. Pei-Dawn Lee. 2011. Metabolism and Pharmacokinetics of San-Huang-Xie-Xin-Tang, a Polyphenol-Rich Chinese Medicine Formula, in Rats andEx-VivoAntioxidant Activity. Evidence-Based Complementary and Alternative Medicine. 2011. 721293. 10.1093/ecam/nep124. 19737807. 3137274. 1741-427X. free.
  29. Wang. Wei-Min. Nwabueze. OkechukwuPatrick. Yang. Hui. Zhai. Hong-Bin. 2018. High-performance liquid chromatography identification of gastroprotective and antioxidant effects of purified fractions A-E from the stem of Coscinium fenestratum. Pharmacognosy Magazine. 14. 55. 78. 10.4103/pm.pm_267_17. 103671390. 0973-1296 . free .
  30. Song. Li. Zhang. Hai-Jing. Deng. An-Jun. Li. Jia. Li. Xiang. Li. Zhi-Hong. Zhang. Zhi-Hui. Wu. Lian-Qiu. Wang. Sheng-Qi. Qin. Hai-Lin. May 2018. Syntheses and structure-activity relationships on antibacterial and anti-ulcerative colitis properties of quaternary 13-substituted palmatines and 8-oxo-13-substituted dihydropalmatines. Bioorganic & Medicinal Chemistry. 26. 9. 2586–2598. 10.1016/j.bmc.2018.04.025. 29680749. 0968-0896.
  31. Guo. Rui. Zhang. Xiaoxiao. Su. Jin. Xu. Haiyu. Zhang. Yanqiong. Zhang. Fangbo. Li. Defeng. Zhang. Yi. Xiao. Xuefeng. Ma. Shuangcheng. Yang. Hongjun. May 2018. Identifying potential quality markers of Xin-Su-Ning capsules acting on arrhythmia by integrating UHPLC-LTQ-Orbitrap, ADME prediction and network target analysis. Phytomedicine. 44. 117–128. 10.1016/j.phymed.2018.01.019. 29526583. 0944-7113.
  32. Tan. Hui-Li. Chan. Kok-Gan. Pusparajah. Priyia. Duangjai. Acharaporn. Saokaew. Surasak. Mehmood Khan. Tahir. Lee. Learn-Han. Goh. Bey-Hing. 2016-10-07. Rhizoma Coptidis: A Potential Cardiovascular Protective Agent. Frontiers in Pharmacology. 7. 362. 10.3389/fphar.2016.00362. 27774066. 5054023. 1663-9812. free.
  33. Ali. Daoud. Ali. Huma. 2014-07-03. Assessment of DNA damage and cytotoxicity of palmatine on human skin epithelial carcinoma cells. Toxicological & Environmental Chemistry. 96. 6. 941–950. 10.1080/02772248.2014.987510. 84213943. 0277-2248.
  34. Li. ZC. Kong. XB. Mai. WP. Sun. GC. Zhao. SZ. 2015. Synthesis and antimicrobial activity of 9-o-substituted palmatine derivatives. Indian Journal of Pharmaceutical Sciences. 77. 2. 196–201. 10.4103/0250-474x.156588. 26009653. 0250-474X. 4442469 . free .
  35. Khan. Asma Yasmeen. Suresh Kumar. Gopinatha. 2015-12-01. Natural isoquinoline alkaloids: binding aspects to functional proteins, serum albumins, hemoglobin, and lysozyme. Biophysical Reviews. en. 7. 4. 407–420. 10.1007/s12551-015-0183-5. 1867-2469. 5418488. 28510102.