In number theory, the valuation or -adic order of an integer is the exponent of the highest power of the prime number that divides .It is denoted
\nup(n)
\nup(n)
p
n
The -adic valuation is a valuation and gives rise to an analogue of the usual absolute value.Whereas the completion of the rational numbers with respect to the usual absolute value results in the real numbers
R
p
Qp
Let be a prime number.
The -adic valuation of an integer
n
\nup(n)= \begin{cases} max\{k\inN0:pk\midn\}&ifn ≠ 0\\ infty&ifn=0, \end{cases}
N0
m\midn
n
m
\nup
\nup\colonZ\toN0\cup\{infty\}
For example,
\nu2(-12)=2
\nu3(-12)=1
\nu5(-12)=0
|{-12}|=12=22 ⋅ 31 ⋅ 50
The notation
pk\paralleln
k=\nup(n)
If
n
\nup(n)\leqlogpn
this follows directly from
n\geq
\nup(n) | |
p |
The -adic valuation can be extended to the rational numbers as the function
\nup:Q\toZ\cup\{infty\}
defined by
\nu | ||||
|
\right)=\nup(r)-\nup(s).
For example,
\nu2l(\tfrac{9}{8}r)=-3
\nu3l(\tfrac{9}{8}r)=2
\tfrac{9}{8}=2-3 ⋅ 32
Some properties are:
\nup(r ⋅ s)=\nup(r)+\nup(s)
\nup(r+s)\geqminl\{\nup(r),\nup(s)r\}
Moreover, if
\nup(r) ≠ \nup(s)
\nup(r+s)=minl\{\nup(r),\nup(s)r\}
where
min
The -adic absolute value (or -adic norm,[6] though not a norm in the sense of analysis) on Q
| ⋅ |p\colon\Q\to\R\ge
|r|p=
-\nup(r) | |
p |
.
Thereby,
|0|p=p-infty=0
p
|{-12}|2=2-2=\tfrac{1}{4}
l|\tfrac{9}{8}r|2=2-(-3)=8.
The -adic absolute value satisfies the following properties.
Non-negativity | r | _p \geq 0 | ||||||
r | _p = 0 \iff r = 0 | |||||||
r s | _p = | r | _p | s | _p | |||
r+s | _p \leq \max\left( | r | _p, | s | _p\right) |
|rs|p=|r|p|s|p
|1|p=1=|-1|p
1
-1
|{-r}|p=|r|p.
|r+s|p\leq|r|p+|s|p
|r+s|p\leqmax\left(|r|p,|s|p\right)
-\nup(r) | |
p |
\prod0,|r|p=1
|r|0
pk
A metric space can be formed on the set
Q
d\colon\Q x \Q\to\R\ge
d(r,s)=|r-s|p.
Q
Qp
infty>n
infty+n=n+infty=infty