Oxyhydride Explained

An oxyhydride is a mixed anion compound containing both oxide O2− and hydride ions H. These compounds may be unexpected as the hydrogen and oxygen could be expected to react to form water. But if the metals making up the cations are electropositive enough, and the conditions are reducing enough, solid materials can be made that combine hydrogen and oxygen in the negative ion role.[1]

Production

The first oxyhydride to be discovered was lanthanum oxyhydride, a 1982 discovery. It was made by heating lanthanum oxide in an atmosphere of hydrogen at 900 °C. However, heating transition metal oxides with hydrogen usually results in water and the reduced metal.

Topochemical synthesis retains the basic structure of the parent compound, and only does the minimum rearrangements of atoms to convert to the final product. Topotactic transitions retain the original crystal symmetry. Reactions at lower temperatures do not distort the existing structure. Oxyhydrides in a topochemical synthesis can be produced by heating oxides with sodium hydride NaH or calcium hydride CaH2 at temperatures from 200–600 °C. TiH2 or LiH can also be used as an agent to introduce hydride. If calcium hydroxide or sodium hydroxide is formed, it might be able to be washed away. However for some starting oxides, this kind of hydride reduction might just yield an oxygen-deficient oxide.

Reactions under hot high-pressure hydrogen can result from heating hydrides with oxides. A suitable seal for the lid on the container is required, and one such substance is sodium chloride.

Oxyhydrides all contain an alkali metal, alkaline earth metal, or rare-earth element, which are needed in order to put electronic charge on hydrogen.

Properties

The hydrogen bonding in oxyhydrides can be covalent, metallic, and ionic bonding, depending on the metals present in the compound.

Oxyhydrides lose their hydrogen less than the pure metal hydrides.

The hydrogen in oxyhydrides is much more exchangeable. For example oxynitrides can be made at much lower temperatures by heating the oxyhydride in ammonia or nitrogen gas (say around 400 °C rather than 900 °C required for an oxide) Acidic attack can replace the hydrogen, for example moderate heating in hydrogen fluoride yields compounds containing oxide, fluoride, and hydride ions (oxyfluorohydride.[2]) The hydrogen is more thermolabile, and can be lost by heating yielding a reduced valence metal compound.

Changing the ratio of hydrogen and oxygen can modify electrical or magnetic properties. Then band gap can be altered. The hydride atom can be mobile in a compound undergoing electron coupled hydride transfer. The hydride ion is highly polarisable, so it presence raised the dielectric constant and refractive index.

Some oxyhydrides have photocatalytic capability. For example BaTiO2.5H0.5 can function as a catalyst for ammonia production from hydrogen and nitrogen.

The hydride ion is quite variable in size, ranging from 130 to 153 pm.

The hydride ion actually does not only have a −1 charge, but will have a charge dependent on its environment, so it is often written as Hδ−.[3] In oxyhydrides, the hydride ion is much more compressible than the other atoms in compounds.[3] Hydride is the only anion with no π orbital, so if it is incorporated into a compound, it acts as a π-blocker, reducing dimensionality of the solid.[3]

Oxyhydride structures with heavy metals cannot be properly studied with X-ray diffraction, as hydrogen hardly has any effect on X-rays. Neutron diffraction can be used to observe hydrogen, but not if there are heavy neutron absorbers like Eu, Sm, Gd, Dy in the material.

List

FormulaStructureSpace groupUnit cellVolumeDensityCommentsReference
Na3SO4HtetrahedralP4/nmma=7.0034 c=4.8569[4]
[η<sup>1</sup>-3,5-''t''Bu<sub>2</sub>pz(η-Al)H)<sub>2</sub>O]2 pz=pyrazolatotriclinicPa=10.202 b=13.128 c=13.612 α=112.39 β=101.90 γ=96.936 Z=11608.71.162[5]
(MeLAlH)2(μ-O)MeL = HC[(CMe)N(2,4,6-Me<sub>3</sub>C<sub>6</sub>H<sub>2</sub>)]2white[6] [7]
CaTiO3−xHx (x ≤ 0.6)Conducting; H in disordered position
Mg2AlNiXHZOY[8]
Sr2LiH3Oionic conductor[9]
Sr3AlO4HtetragonalI4/mcma =6.7560 c =11.1568[10]
Sr2CaAlO4HtetragonalI4/mcma= 6.6220 c= 10.9812481.531
Sr21Si2O5H14cubic[11]
Sr5(BO3)3HorthorhombicPnmaa=7.1982, b=14.1461, c=9.82151000.10decomposed by water[12]
LiSr2SiO4HmonoclinicP21/ma = 6.5863, b = 5.4236, c = 6.9501, β = 112.5637air stable[13]
Sr21Si2O5H12+xcubicFdma = 19.1190[14]
Sr5(PO4)3HhexagonalP63/ma = 9.7169, c = 7.2747594.83for deuteride[15]
SrTiO3−xHx (x ≤ 0.6)Conducting; H in disordered position
SrVO2H
Sr2VO3H
Sr3V2O5H2
SrCrO2Hcubicproduced under 5GPa 1000 °C
Sr3Co2O4.33H0.84insulator
YHOorthorhombicPnmaa = 7.5367, b = 3.7578, c = 5.3249[16]
YOxHyphotochromic
band gap 2.6 eV
[17]
Zr3V3OD5[18]
Zr5Al3OH5
Ba3AlO4HorthorhombicPnmaZ=4,a=10.4911,b=8.1518,c=7.2399[19]
BaTiO3−xHx (x ≤ 0.6)Conducting; H in disordered position
Ba2NaTiO3H3cubicFmma=8.29714[20]
BaVO3−xHx (x = .3)5 GPa hexagonal, 7GPa cubic
Ba2NaVO2.4H3.6cubicFmma=8.22670
BaCrO2HhexagonalP63/mmca =5.6559 c =13.7707[21]
Ba2NaCrO2.2H3.8cubicFmma=8.17470
Ba21Zn2O5H12cubicFdma = 20.417
Sr2BaAlO4HtetragonalI4/mcma =6.9093 c =11.2107
Ba21Cd2O5H12cubicFdma=20.633
Ba21Hg2O5H12cubicFdma=20.507
Ba21In2O5H12cubicFdma=20.607
Ba21Tl2O5H12cubicFdma=20.68
Ba21Si2O5H14cubicFdma=20.336
Ba21Ge2O5H14cubicFdma=20.356
Ba21Sn2O5H14cubicFdma=20.532
Ba21Pb2O5H14cubicFdma=20.597
Ba21As2O5H16cubicFdma=20.230
Ba21Sb2O5H16cubicFdma=20.419
BaScO2HCubicPmma=4.1518[22]
Ba2ScHO3H conductor[23]
Ba2YHO3a=4.38035 c=13.8234H conductor[24]
Ba3AlO4H
Ba21Si2O5H24cubicFdma = 20.336Zintl phase
Ba21Zn2O5H24cubicFdma = 20.417[25]
Ba21Ge2O5H24cubicFdma = 20.356Zintl phase
Ba21Ga2O5H24cubicFdmZintl phase
Ba21As2O5H24cubicFdma = 20.230
Ba21Cd2O5H24cubicFdma = 20.633
Ba21In2O5H24cubicFdma = 20.607Zintl phase
Ba21Sn2O5H24cubicFdma = 20.532
Ba21Sb2O5H24cubicFdma = 20.419
La2LiHO3orthorhombicImmma=3.57152 b=3.76353 c=12.9785[26]
La0.6Sr1.4LiH1.6O2H conductor
LaSr3NiRuO4H4
LaSrMnO3.3H0.7high-pressure fabrication
LaSrCoO3H0.7insulator[27]
Nd0.8Sr0.2NiO2Hx (x = 0.2–0.5)superconductor for x between 0.22 and 0.28[28]
EuTiO3−xHx (x ≤ 0.6)Conducting; H in disordered position
LiEu2HOCl2orthorhombicCmcma = 14.923, b = 5.7012, c = 11.4371, Z = 8density 5.444; yellow[29]
LaHO[30]
CeHO
PrHO
NdHOP4/nmma=7.8480, c=5.5601 V=342.46
GdHOFmma = 5.38450[31]
HoHOF4̅3ma = 5.2755light-yellow under the sun; pink indoors[32]
DyHOcubicF4̅3ma=5.3095[33]
ErHOcubicF4̅3ma=5.24615
LuHOcubicF4̅3ma=5.17159
LuHOorthorhombicPnmaa = 7.3493, b = 3.6747, c = 5.1985
CeNiHZOYCatalyse ethanol to H2[34]
Ba21Tl2O5H24cubicFdma = 20.68Zintl phase
Ba21Hg2O5H24cubicFdma = 20.507
Ba21Pb2O5H24cubicFdma = 20.597
Ba21Bi2O5H16cubicFdma=20.459
PuHOFormed during corrosion of plutonium metal in water[35]

Three or more anions

FormulaStructureSpace groupUnit cellCommentsReference
LiEu2HOCl2orthorhombicCmcma = 14.923 b = 5.7012 c = 11.4371 Z = 8yellow[36]
Sr2LiHOCl2orthorhombicCmcma = 15.0235 b = 5.69899 c = 11.4501synthesized at ambient pressure and 2 GPa; ordered H/O[37]
Sr2LiHOCl2tetragonalI4/mmma = 4.04215 c = 15.04359synthesized at 5 GPa; disordered H/O
Sr2LiHOBr2tetragonalI4/mmma = 4.1097 c = 16.1864synthesized at 5 GPa; disordered H/O
Ba2LiHOCl2tetragonalI4/mmma = 4.26816 c = 15.6877synthesized at 5 GPa; disordered H/O

See also

Notes and References

  1. Wang . Kristen . Wu . Zili . Jiang . De-en . Ammonia synthesis on BaTiO 2.5 H 0.5 : computational insights into the role of hydrides . Physical Chemistry Chemical Physics . 2022 . 24 . 3 . 1496–1502 . 10.1039/D1CP05055A . 34935803 . 2022PCCP...24.1496W . 1881073 .
  2. KAMIGAITO . Osami . Density of Compound Oxides. . Journal of the Ceramic Society of Japan . 2000 . 108 . 1262 . 944–947 . 10.2109/jcersj.108.1262_944 . free.
  3. Kageyama . Hiroshi . Hayashi . Katsuro . Maeda . Kazuhiko . Attfield . J. Paul . Hiroi . Zenji . Rondinelli . James M. . Poeppelmeier . Kenneth R. . Kenneth Poeppelmeier . Expanding frontiers in materials chemistry and physics with multiple anions . Nature Communications . 22 February 2018 . 9 . 1 . 772 . 10.1038/s41467-018-02838-4 . 29472526 . 5823932 . 2018NatCo...9..772K.
  4. Mutschke . Alexander . Bernard . Guy M. . Bertmer . Marko . Karttunen . Antti J. . Ritter . Clemens . Michaelis . Vladimir K. . Kunkel . Nathalie . 2021-03-08 . Na 3 SO 4 H—The First Representative of the Material Class of Sulfate Hydrides . Angewandte Chemie International Edition . en . 60 . 11 . 5683–5687 . 10.1002/anie.202016582 . 1433-7851 . 7986708 . 33438295.
  5. Zheng . Wenjun . Mösch-Zanetti . Nadia C. . Roesky . Herbert W. . Noltemeyer . Mathias . Hewitt . Manuel . Schmidt . Hans-Georg . Schneider . Thomas R. . 2000-12-01 . Alumoxane Hydride and Aluminum Chalcogenide Hydride Compounds with Pyrazolato Ligands . Angewandte Chemie . de . 112 . 23 . 4446–4449 . 10.1002/1521-3757(20001201)112:23<4446::AID-ANGE4446>3.0.CO;2-I. 2000AngCh.112.4446Z .
  6. González-Gallardo . Sandra . Cruz-Zavala . Aracely S. . Jancik . Vojtech . Cortés-Guzmán . Fernando . Moya-Cabrera . Mónica . 2013-03-18 . Preparation of Telluro- and Selenoalumoxanes under Mild Conditions . Inorganic Chemistry . en . 52 . 6 . 2793–2795 . 10.1021/ic302588f . 23458274 . 0020-1669.
  7. González-Gallardo . Sandra . Jancik . Vojtech . Cea-Olivares . Raymundo . Toscano . Rubén A. . Moya-Cabrera . Mónica . 2007-04-13 . Preparation of Molecular Alumoxane Hydrides, Hydroxides, and Hydrogensulfides . Angewandte Chemie International Edition . en . 46 . 16 . 2895–2898 . 10.1002/anie.200605081 . 17373011 . 1433-7851.
  8. Fang . Wenhao . Romani . Yann . Wei . Yaqian . Jiménez-Ruiz . Mónica . Jobic . Hervé . Paul . Sébastien . Jalowiecki-Duhamel . Louise . Steam reforming and oxidative steam reforming for hydrogen production from bioethanol over Mg2AlNiXHZOY nano-oxyhydride catalysts . International Journal of Hydrogen Energy . September 2018 . 43 . 37 . 17643–17655 . 10.1016/j.ijhydene.2018.07.103 . 105746959 .
  9. Kobayashi . G. . Hinuma . Y. . Matsuoka . S. . Watanabe . A. . Iqbal . M. . Hirayama . M. . Yonemura . M. . Kamiyama . T. . Tanaka . I. . Kanno . R. . Pure H- conduction in oxyhydrides . Science . 17 March 2016 . 351 . 6279 . 1314–1317 . 10.1126/science.aac9185 . 26989251 . 2016Sci...351.1314K . free.
  10. Wu . Tong . Fujii . Kotaro . Murakami . Taito . Yashima . Masatomo . Matsuishi . Satoru . 2020-10-19 . Synthesis and Photoluminescence Properties of Rare-Earth-Activated Sr 3– x A x AlO 4 H (A = Ca, Ba; x = 0, 1): New Members of Aluminate Oxyhydrides . Inorganic Chemistry . en . 59 . 20 . 15384–15393 . 10.1021/acs.inorgchem.0c02356 . 32991153 . 222146038 . 0020-1669.
  11. Jehle . Michael . Hoffmann . Anke . Kohlmann . Holger . Scherer . Harald . Röhr . Caroline . February 2015 . The 'sub' metallide oxide hydrides Sr 21 Si 2 O 5 H 12 + x and Ba 21 M 2 O 5 H 12 + x (M = Zn, Cd, Hg, In, Tl, Si, Ge, Sn, Pb, As, Sb, Bi) . Journal of Alloys and Compounds . en . 623 . 164–177 . 10.1016/j.jallcom.2014.09.228.
  12. Wylezich . Thomas . Valois . Renaud . Suta . Markus . Mutschke . Alexander . Ritter . Clemens . Meijerink . Andries . Karttunen . Antti J. . Kunkel . Nathalie . 2020-09-10 . Borate Hydrides as a New Material Class: Structure, Computational Studies, and Spectroscopic Investigations on Sr 5 (BO 3) 3 H and Sr 5 (11 BO 3) 3 D . Chemistry – A European Journal . en . 26 . 51 . 11742–11750 . 10.1002/chem.202002273 . 0947-6539 . 7540042 . 32542938.
  13. Gehlhaar . Florian . Finger . Raphael . Zapp . Nicolas . Bertmer . Marko . Kohlmann . Holger . 2018-10-01 . LiSr 2 SiO 4 H, an Air-Stable Hydride as Host for Eu(II) Luminescence . Inorganic Chemistry . en . 57 . 19 . 11851–11854 . 10.1021/acs.inorgchem.8b01780 . 30203971 . 52181350 . 0020-1669.
  14. Jehle . Michael . Hoffmann . Anke . Kohlmann . Holger . Scherer . Harald . Röhr . Caroline . February 2015 . The 'sub' metallide oxide hydrides Sr 21 Si 2 O 5 H 12 + x and Ba 21 M 2 O 5 H 12 + x (M= Zn, Cd, Hg, In, Tl, Si, Ge, Sn, Pb, As, Sb, Bi) . Journal of Alloys and Compounds . en . 623 . 164–177 . 10.1016/j.jallcom.2014.09.228.
  15. Mutschke . Alexander . Wylezich . Thomas . Ritter . Clemens . Karttunen . Antti J. . Kunkel . Nathalie . 2019-12-31 . An Unprecedented Fully H – -Substituted Phosphate Hydride Sr 5 (PO 4) 3 H Expanding the Apatite Family . European Journal of Inorganic Chemistry . en . 2019 . 48 . 5073–5076 . 10.1002/ejic.201901151 . 212948208 . 1434-1948 . free.
  16. Zapp . Nicolas . Auer . Henry . Kohlmann . Holger . 2019-11-04 . YHO, an Air-Stable Ionic Hydride . Inorganic Chemistry . en . 58 . 21 . 14635–14641 . 10.1021/acs.inorgchem.9b02308 . 31626539 . 204788264 . 0020-1669.
  17. Plokker . M.P. . Eijt . S.W.H. . Naziris . F. . Schut . H. . Nafezarefi . F. . Schreuders . H. . Cornelius . S. . Dam . B. . Electronic structure and vacancy formation in photochromic yttrium oxy-hydride thin films studied by positron annihilation . Solar Energy Materials and Solar Cells . April 2018 . 177 . 97–105 . 10.1016/j.solmat.2017.03.011 . free. 2018SEMSC.177...97P .
  18. Kobayashi . Yoji . Hernandez . Olivier . Tassel . Cédric . Kageyama . Hiroshi . New chemistry of transition metal oxyhydrides . Science and Technology of Advanced Materials . 16 November 2017 . 18 . 1 . 905–918 . 10.1080/14686996.2017.1394776 . 29383042 . 5784496 . 2017STAdM..18..905K . free.
  19. Huang . Baoquan . Corbett . John D. . December 1998 . Ba3AlO4H: Synthesis and Structure of a New Hydrogen-Stabilized Phase . Journal of Solid State Chemistry . en . 141 . 2 . 570–575 . 10.1006/jssc.1998.8022 . 1998JSSCh.141..570H.
  20. Yajima . Takeshi . Takahashi . Kanako . Nakajima . Hotaka . Honda . Takashi . Ikeda . Kazutaka . Otomo . Toshiya . Hiroi . Zenji . 2022-01-31 . High-Pressure Synthesis of Transition-Metal Oxyhydrides with Double-Perovskite Structures . Inorganic Chemistry . en . 61 . 4 . 2010–2016 . 10.1021/acs.inorgchem.1c03162 . 35034444 . 0020-1669.
  21. Higashi . Kentaro . Ochi . Masayuki . Nambu . Yusuke . Yamamoto . Takafumi . Murakami . Taito . Yamashina . Naoya . Tassel . Cédric . Matsumoto . Yuki . Takatsu . Hiroshi . Brown . Craig M. . Kageyama . Hiroshi . 2021-08-16 . Enhanced Magnetic Interaction by Face-Shared Hydride Anions in 6H-BaCrO 2 H . Inorganic Chemistry . en . 60 . 16 . 11957–11963 . 10.1021/acs.inorgchem.1c00992 . 34309363 . 236432530 . 0020-1669.
  22. Goto . Yoshihiro . Tassel . Cédric . Noda . Yasuto . Hernandez . Olivier . Pickard . Chris J. . Green . Mark A. . Sakaebe . Hikari . Taguchi . Noboru . Uchimoto . Yoshiharu . Kobayashi . Yoji . Kageyama . Hiroshi . May 2017 . Pressure-Stabilized Cubic Perovskite Oxyhydride BaScO 2 H . Inorganic Chemistry . en . 56 . 9 . 4840–4845 . 10.1021/acs.inorgchem.6b02834 . 28398729 . 0020-1669.
  23. Takeiri . Fumitaka . Watanabe . Akihiro . Kuwabara . Akihide . Nawaz . Haq . Ayu . Nur Ika Puji . Yonemura . Masao . Kanno . Ryoji . Kobayashi . Genki . Ba2 ScHO3 : H- Conductive Layered Oxyhydride with H- Site Selectivity . Inorganic Chemistry . 20 February 2019 . 58 . 7 . 4431–4436 . 10.1021/acs.inorgchem.8b03593 . 30784265 . 73480447.
  24. Morgan . Harry W. T. . Yamamoto . Takafumi . Nishikubo . Takumi . Ohmi . Takuya . Koike . Takehiro . Sakai . Yuki . Azuma . Masaki . Ishii . Hirofumi . Kobayashi . Genki . McGrady . John E. . 2022-04-22 . Sequential Pressure-Induced B 1– B 2 Transitions in the Anion-Ordered Oxyhydride Ba 2 YHO 3 . Inorganic Chemistry . 61 . 18 . en . 7043–7050 . 10.1021/acs.inorgchem.2c00465 . 35451819 . 9092455 . 0020-1669.
  25. Jehle . Michael . Hoffmann . Anke . Kohlmann . Holger . Scherer . Harald . Röhr . Caroline . February 2015 . The 'sub' metallide oxide hydrides Sr 21 Si 2 O 5 H 12 + x and Ba 21 M 2 O 5 H 12 + x (M= Zn, Cd, Hg, In, Tl, Si, Ge, Sn, Pb, As, Sb, Bi) . Journal of Alloys and Compounds . en . 623 . 164–177 . 10.1016/j.jallcom.2014.09.228.
  26. Fjellvåg . Øystein S. . Armstrong . Jeff . Sławiński . Wojciech A. . Sjåstad . Anja O. . 2017-09-18 . Thermal and Structural Aspects of the Hydride-Conducting Oxyhydride La 2 LiHO 3 Obtained via a Halide Flux Method . Inorganic Chemistry . en . 56 . 18 . 11123–11128 . 10.1021/acs.inorgchem.7b01409 . 28862439 . 0020-1669. 10852/69421 . free .
  27. Kageyama . Hiroshi . Yajima . Takeshi . Tsujimoto . Yoshihiro . Yamamoto . Takafumi . Tassel . Cedric . Kobayashi . Yoji . Exploring Structures and Properties through Anion Chemistry . Bulletin of the Chemical Society of Japan . 15 August 2019 . 92 . 8 . 1349–1357 . 10.1246/bcsj.20190095 . free.
  28. Ding . Xiang . Tam . Charles C. . Sui . Xuelei . Zhao . Yan . Xu . Minghui . Choi . Jaewon . Leng . Huaqian . Zhang . Ji . Wu . Mei . Xiao . Haiyan . Zu . Xiaotao . Garcia-Fernandez . Mirian . Agrestini . Stefano . Wu . Xiaoqiang . Wang . Qingyuan . 2023-03-02 . Critical role of hydrogen for superconductivity in nickelates . Nature . en . 615 . 7950 . 50–55 . 10.1038/s41586-022-05657-2 . 36859583 . 2023Natur.615...50D . 257260047 . 0028-0836.
  29. Rudolph . Daniel . Enseling . David . Jüstel . Thomas . Schleid . Thomas . 2017-11-17 . Crystal Structure and Luminescence Properties of the First Hydride Oxide Chloride with Divalent Europium: LiEu 2 HOCl 2: Crystal Structure and Luminescence Properties of the First Hydride Oxide Chloride with Divalent Europium: LiEu 2 HOCl 2 . Zeitschrift für anorganische und allgemeine Chemie . en . 643 . 21 . 1525–1530 . 10.1002/zaac.201700224 . free.
  30. Widerøe . Marius . Fjellvåg . Helmer . Norby . Truls . Willy Poulsen . Finn . Willestofte Berg . Rolf . July 2011 . NdHO, a novel oxyhydride . Journal of Solid State Chemistry . en . 184 . 7 . 1890–1894 . 10.1016/j.jssc.2011.05.025 . 2011JSSCh.184.1890W.
  31. Ueda . Jumpei . Matsuishi . Satoru . Tokunaga . Takayuki . Tanabe . Setsuhisa . 2018 . Preparation, electronic structure of gadolinium oxyhydride and low-energy 5d excitation band for green luminescence of doped Tb 3+ ions . Journal of Materials Chemistry C . en . 6 . 28 . 7541–7548 . 10.1039/C8TC01682H . 2050-7526 .
  32. Zapp . Nicolas . Sheptyakov . Denis . Franz . Alexandra . Kohlmann . Holger . 2021-03-03 . HoHO: A Paramagnetic Air-Resistant Ionic Hydride with Ordered Anions . Inorganic Chemistry . 60 . 6 . en . 3972–3979 . 10.1021/acs.inorgchem.0c03822 . 33656854 . 232115169 . 0020-1669.
  33. Zapp . Nicolas . Sheptyakov . Denis . Kohlmann . Holger . 2021-06-26 . Computational Chemistry-Guided Syntheses and Crystal Structures of the Heavier Lanthanide Hydride Oxides DyHO, ErHO, and LuHO . Crystals . en . 11 . 7 . 750 . 10.3390/cryst11070750 . 2073-4352 . free.
  34. Pirez . Cyril . Capron . Mickaël . Jobic . Hervé . Dumeignil . Franck . Jalowiecki-Duhamel . Louise . 2011-10-17 . Highly Efficient and Stable CeNiHZOY Nano-Oxyhydride Catalyst for H2 Production from Ethanol at Room Temperature . Angewandte Chemie International Edition . en . 50 . 43 . 10193–10197 . 10.1002/anie.201102617 . 21990250.
  35. John M. Haschke Thomas H. Allen: Plutonium Hydride, Sesquioxide and Monoxide Monohydride: Pyrophoricity and Catalysis of Plutonium Corrosion, Journal of Alloys and Compounds, 320, 1, 2001, 58–71, .
  36. Rudolph . Daniel . Enseling . David . Jüstel . Thomas . Schleid . Thomas . Crystal Structure and Luminescence Properties of the First Hydride Oxide Chloride with Divalent Europium: LiEu2HOCl2 . Zeitschrift für anorganische und allgemeine Chemie . 17 November 2017 . 643 . 21 . 1525–1530 . 10.1002/zaac.201700224 . free.
  37. Wei . Zefeng . Ubukata . Hiroki . Zhong . Chengchao . Tassel . Cédric . Kageyama . Hiroshi . 2023-05-09 . Pressure-Induced Anion Order–Disorder Transition in Layered Perovskite Sr2LiHOCl2 . Inorganic Chemistry . 62 . 20 . en . 7993–8000 . 10.1021/acs.inorgchem.3c00909 . 37159274 . 258567534 . 0020-1669.