Oxonickelates Explained

Nickel forms a series of mixed oxide compounds which are commonly called nickelates.A nickelate is an anion containing nickel or a salt containing a nickelate anion, or a double compound containing nickel bound to oxygen and other elements. Nickel can be in different or even mixed oxidation states, ranging from +1, +2, +3 to +4. The anions can contain a single nickel ion, or multiple to form a cluster ion. The solid mixed oxide compounds are often ceramics, but can also be metallic. They have a variety of electrical and magnetic properties. Rare-earth elements form a range of perovskite nickelates, in which the properties vary systematically as the rare-earth element changes. Fine tuning of properties is achievable with mixtures of elements, applying stress or pressure, or varying the physical form.

Inorganic chemists call many compounds that contain nickel centred anions "nickelates". These include the chloronickelates, fluoronickelates, tetrabromonickelates, tetraiodonickelates, cyanonickelates, nitronickelates and other nickel-organic acid complexes such as oxalatonickelates.

Alkali nickelates

The lithium nickelates are of interest to researchers as cathodes in lithium cells, as these substance can hold a variable amount of lithium, with the nickel varying in oxidation state.

Rare-earth nickelates

Rare-earth nickelates with nickel in a +1 oxidation state have an electronic configuration to same as for cuprates and so are of interest to high-temperature superconductor researchers. Other rare-earth nickelates can function as fuel cell catalysts. The ability to switch between an insulating and a conducting state in some of these materials is of interest in the development of new transistors, that have higher on to off current ratios.[1]

The rare-earth nickelates were first made by Demazeau et al. in 1971, by heating a mixture of oxides under high pressure oxygen, or potassium perchlorate. However they were unable to make the cerium, praseodymium, and terbium nickelates.[2] This may be because Ce, Pr and Tb oxidises to 4+ions in those conditions.[3] For two decades after that no one paid attention to them.[3] Many rare-earth nickelates have the Ruddlesden–Popper phase structure.

List of oxides

formulanameother namesstructureRemarksreferences
LiNiO2lithium nickelaterhombohedral a = 2.88 Å, c = 14.2 Å, density = 4.78 / 4.81[4]
Li2NiO3monoclinic C2/m a = 4.898 Å, b = 8.449 Å, c = 4.9692 Å, β = 109.02°, V = 194.60 Å3Nickel in +4 state[5]
NaNiO2sodium nickelatemonoclinic a = 5.33 Å, b = 2.86 Å, c = 5.59 Å, β = 110°30′, Z = 2, density = 4.74; over 220 °C: rhombohedral a = 2.96 Å, b = 15.77 ÅCarbon dissolved in the molten salt can precipitate diamond. [6]
KNiO2potassium nickelate[7]
SrTiNiO3strontium titanate nickelateSTN[8]
YNiO3yttrium nickelatemonoclinic P21/n; orthorhombic a = 5.516 Å, b = 7.419 Å, c = 5.178 Å, V = 211.9 Å3, Z = 4, density = 6.13insulator changes to metal under pressure[9] [10]
Y2BaNiO5chain nickelateOrthorhombic Immm, a = 3.7589, b = 5.7604, c = 11.3311[11]
2H-AgNiO2hexagonal P63/mmc, a = 2.93653 Å, b = 2.93653 Å, c = 12.2369 Å, V = 91.384 Å3, Z = 2, density = 7.216 g/cm3Ni in +3 state[12]
3R-AgNiO2trigonal R2/m, a = 2.9390 Å, c = 18.3700 ÅNi in +3 state
Ag2NiO2silveroxonickelatetrigonal R2/m, a = 2.926 Å, c = 24.0888 Ålustrous black solid, stable in air; Ni3+ and subvalent Ag2+[13]
Ag3Ni2O4hexagonal P63/mmc, a = 2.9331 Å, b = 2.9331 Å, c = 28.31 Å, V = 210.9 Å3, Z = 2, density = 7.951 g/cm3electric conductor[14]
BaNiO2orthorhombic a = 5.73 Å, b = 9.2 Å, c = 4.73 Å, V = 249 Å3, Z = 4black
BaNiO3hexagonal a = 5.580 Å, c = 4.832 Å, V = 130.4 Å3, Z = 2black powder dec 730 °C N-type semiconductor; decompose in acid[15]
Ba2Ni2O5hexagonal a = 5.72, c = 4.30, density = 6.4black needles melt 1200 °C [16]
LaNiO2lanthanum nickelitea = 3.959, c = 3.375Ni in +1 state[17]
LaNiO3lanthanum nickelatea = 5.4827 Å, b = 5.4827 Å, c = 3.2726 Å, γ = 120°, V = 345.5, Z = 6, density = 7.08metallic, no insulating transition polar metal[18]
La2NiO4LNtetragonal a = 3.86 Å, b = 3.86 Å, c = 12.67 Å, V = 188.8 Å3, Z = 2, density = 7.05[19]
La3Ni2O6tetragonal a = 3.968 Å, c = 19.32 Å[20]
La3Ni2O7a = 5.3961 Å, b = 5.4498 Å, c = 20.522 Å, V = 603.5, Z = 4, density = 7.1superconductor under pressure Tc=80K[21] [22]
La4Ni3O8antiferromagnetic below 105 K, mixed valence I and II[23]
La4Ni3O10
La2−xSrxNiO4LSNa varies from 3.86 to 3.81 as x changes from 0 to 0.5, then ≈ 3.81; c ≈ 12.7 for x ≤ 0.8, the it falls to 12.4 at x = 1.2polarization-specific metal[24]
CeNiO3cerium nickelatedecomposes 1984 °C[25]
PrNiO2
PrNiO3perovskitemetallic insulator transition=130K
Pr4Ni3O8
Pr2BaNiO5chain nickelateOrthorhombic
NdNiO3neodymium nickelateperovskite orthorhombic Pbnm, a = 5.38712 Å, b = 5.38267 Å, c = 7.60940 Åmetallic insulator transition=200K
NdNiO2orthorhombic a = 5.402 Å, b = 7.608 Å, c = 5.377 Å, V = 221.0 Å3, density = 7.54[26] [27]
Nd4Ni3O8orthorhombic a = 3.9171 Å, b = 3.9171 Å, c = 25.307 Å, V = 388.3 Å3, Z = 2, density = 7.54[28]
Nd2NiO4Cmca a = 5.383 Å, b = 12.342 Å, c = 5.445 Å, V = 361.7 Å3, density = 7.55[29]
Nd2BaNiO5chain nickelateOrthorhombic Immm, a = 2.8268 Å, b = 5.9272 Å, c = 11.651 Å[30]
SmNiO3samarium nickelateSNOperovskite Pnma, a = 5.431 Å, b = 7.568 Å, c = 5.336 Å, V = 219.3 Å, Z = 4, density = 7.79metallic insulator transition=400K[31]
Sm1.5Sr0.5NiO4SSNOorthorhombic Bmabgiant dielectric constant 100,000[32]
EuNiO3europium nickelateperovskite orthorhombic a = 5.466 Å, b = 7.542 Å, c = 5.293 Å, V = 218.2 Å3, Z = 4, density = 7.87metallic insulator transition=460K[33]
GdNiO3gadolinium nickelateperovskite orthorhombic a = 0.5492 Å, b = 0.7506 Å, c = 0.5258 Å, V = 216.8 Å3, Z = 4, density = 8.09metallic insulator transition=510.9K
Gd2NiO4digadolinium nickelateOrthorhombic a = 3.851 Å, b = 3.851 Å, c = 6.8817 Å, V = 187.5 Å3, Z = 2, density = 7.75[34]
BaGd2NiO5barium digadolinium nickelatechain nickellate?orthorhombiclow thermal conductance[35]
Tb2BaNiO5chain nickelateOrthorhombic
DyNiO3dysprosium nickelateperovskite orthorhombic a = 0.55 Å, b = 0.7445 Å, c = 0.5212 Å V=213.4 Z=4 density=8.38metallic insulator transition=564.1K[36]
Dy2BaNiO5chain nickelateOrthorhombic
HoNiO3holmium nickelateperovskite orthorhombic a = 3.96 Å, b = 3.96 Å, c = 5.04 Å, V = 212 Å3 Z = 4, density=8.51 metallic insulator transition=560K
Ho2BaNiO5chain nickelateOrthorhombic Immm, a = 3.764 Å, b = 5.761 Å, c=11.336 Å[37]
ErNiO3erbium nickelateperovskite orthorhombic a = 5.514 Å, b =7.381 Å, c = 5.16 V=201 Z=4 density=8.67metallic insulator transition=580K[38]
Er2BaNiO5chain nickelateOrthorhombic Immm a = 3.7541 Å, b = 5.7442 Å c=11.3019 Å V=243.71 Å3 Z=2[39]
TmNiO3thulium nickelateorthorhombic a = 5.495 Å, b = 7.375 Å, c = 5.149 Å V = 208.7 Z = 4 density = 8.77[40]
Tm2BaNiO5thulium barium nickelateOrthorhombic low temperature Pnma a = 12.2003 Å b = 5.65845 Å c = 6.9745 Å Z = 4; high T: Immm a = 3.75128 b = 5.7214 c = 11.2456Pnma form is brown Immm form is dark green[41]
YbNiO3ytterbium nickelateOrthorhombic a = 5.496 Å, b = 7.353 Å, c = 5.131 Å Z=4 V=207.4 Å3 density=8.96[42]
Yb2BaNiO5ytterbium barium nickelateOrthorhombic Pnma a = 5.6423 Å, b = 6.9545 Å, c = 12.1583 Å V=477.1 Z=4 density=8.66Pnma form is brown
LuNiO3lutetium nickelateperovskite a = 5.499 Å, b = 7.356 Å, c = 5.117 Å, V = 207 Å3, Z = 4, density = 9.04metallic insulator transition=600K[43] [44]
Lu2BaNiO5Orthorhombic Pnma
TlNiO3thallium nickelate(III)perovskite a = 5.2549 Å, b = 5.3677 Å, c = 7.5620 Å, V = 213.3 Å3[45]
PbNiO3
BiNiO3bismuth nickelate(III)perovskite triclinic a = 5.3852, b = 5.6498, c = 7.7078 Å, α = 91.9529°, β = 89.8097°, γ = 91.5411, V = 234.29 Å3[46] [47]

See also

Notes and References

  1. Notman. Nina. Edging towards silicon-free transistors. Materials Today. December 2014. 17. 10. 473. 10.1016/j.mattod.2014.10.034. free.
  2. Demazeau. Gérard. Marbeuf. Alain. Pouchard. Michel. Hagenmuller. Paul. Sur une série de composés oxygènes du nickel trivalent derivés de la perovskite. Journal of Solid State Chemistry. November 1971. 3. 4. 582–589. fr. 10.1016/0022-4596(71)90105-8. 1971JSSCh...3..582D.
  3. Alonso. J. A.. Martínez Lope. M. J.. Casais. M. T.. Martínez. J. L.. Demazeau. G.. Largeteau. A.. García Muñoz. J. L.. Muñoz. A.. Fernández-Díaz. M. T.. High-Pressure Preparation, Crystal Structure, Magnetic Properties, and Phase Transitions in GdNiO3 and DyNiO3 Perovskites. Chemistry of Materials. September 1999. 11. 9. 2463–2469. 10.1021/cm991033k.
  4. Dyer. Lawrence D.. Borie. Bernard S.. Smith. G. Pedro. Alkali Metal-Nickel Oxides of the Type MNiO2. Journal of the American Chemical Society. March 1954. 76. 6. 1499–1503. 10.1021/ja01635a012.
  5. Shinova. Elitza. Zhecheva. Ekaterina. Stoyanova. Radostina. Bromiley. Geoffrey D.. High-pressure synthesis of solid solutions between trigonal LiNiO2 and monoclinic Li[Li<sub>1/3</sub>Ni<sub>2/3</sub>]O2. Journal of Solid State Chemistry. May 2005. 178. 5. 1661–1669. 10.1016/j.jssc.2005.03.007. 2005JSSCh.178.1661S.
  6. Komath. M.. Cherian. K. A.. Kulkarni. S. K.. Ray. A.. The role of sodium nickelate in the metastable recrystallization of diamond. Diamond and Related Materials. 1994. 4. 1. 20–25. 1994DRM.....4...20K. 10.1016/0925-9635(94)90064-7.
  7. Hofmann. K. A.. Hiendlmaier. H.. Sauerstoffübertragung durch brennendes Kalium. Berichte der Deutschen Chemischen Gesellschaft. July 1906. 39. 3. 3184–3187. 10.1002/cber.190603903136.
  8. Lee. Ke-Jing. Wang. Li-Wen. Chiang. Te-Kung. Wang. Yeong-Her. Effects of Electrodes on the Switching Behavior of Strontium Titanate Nickelate Resistive Random Access Memory. Materials. 26 October 2015. 8. 10. 7191–7198. 10.3390/ma8105374. 28793630. 2015Mate....8.7191L. 5455395. free.
  9. García Muñoz. J. L.. Amboage. M.. Hanfland. M.. Alonso. J. A.. Martínez Lope. M. J.. Mortimer. R.. Pressure-induced melting of charge-order in the self-doped mott insulator yttrium nickelate. High Pressure Research. March 2003. 23. 1–2. 171–175. 10.1080/0895795031000114430. 2003HPR....23..171G. 94841772.
  10. Yamamoto. Susumu. Fujiwara. Takeo. Symmetry consideration and eg bands in NdNiO3 and YNiO3. Journal of Physics and Chemistry of Solids. June 2002. 63. 6–8. 1347–1351. 10.1016/S0022-3697(02)00085-9. 2002JPCS...63.1347Y. cond-mat/0110431. 15894552.
  11. Alonso. J. A.. Rasines. I.. Rodriguez-Carvajal. J.. Torrance. J. B.. Hole and Electron Doping of R2BaNiO5 (R = Rare Earths). Journal of Solid State Chemistry. April 1994. 109. 2. 231–240. 10.1006/jssc.1994.1098. 1994JSSCh.109..231A.
  12. Sörgel. Timo. Jansen. Martin. Eine neue, hexagonale Modifikation von AgNiO2. A New Hexagonal Modification of AgNiO2. Zeitschrift für Anorganische und Allgemeine Chemie. November 2005. 631. 15. 2970–2972. de. 10.1002/zaac.200500295.
  13. Schreyer. Martin. Jansen. Martin. Synthesis and Characterization of Ag2NiO2 Showing an Uncommon Charge Distribution. Angewandte Chemie. 15 February 2002. 114. 4. 665–668. 10.1002/1521-3757(20020215)114:4<665::AID-ANGE665>3.0.CO;2-Z.
  14. Sörgel. Timo. Jansen. Martin. Ag3Ni2O4—A new stage-2 intercalation compound of 2H–AgNiO2 and physical properties of 2H–AgNiO2 above ambient temperature. Journal of Solid State Chemistry. January 2007. 180. 1. 8–15. 10.1016/j.jssc.2006.08.033. 2007JSSCh.180....8S. available on ScienceDirect
  15. Lander. J. J.. Wooten. L. A.. Barium-Nickel Oxides with Tri- and Tetravalent Nickel. Journal of the American Chemical Society. June 1951. 73. 6. 2452–2454. 10.1021/ja01150a013.
  16. Lander. J. J.. The crystal structures of NiO·3BaO, NiO·BaO, BaNiO3 and intermediate phases with composition near Ba2Ni2O5; with a note on NiO. Acta Crystallographica. 1 March 1951. 4. 2. 148–156. 10.1107/S0365110X51000441.
  17. Crespin. M.. Isnard. O.. Dubois. F.. Choisnet. J.. Odier. P.. LaNiO2: Synthesis and structural characterization. Journal of Solid State Chemistry. April 2005. 178. 4. 1326–1334. 10.1016/j.jssc.2005.01.023. 2005JSSCh.178.1326C.
  18. Web site: Atom Work Inorganic Material Database. 23 April 2016.
  19. Web site: La2NiO4 in K2NiF4 structure. 23 April 2016.
  20. Poltavets. Viktor V.. Lokshin. Konstantin A.. Dikmen. Sibel. Croft. Mark. Egami. Takeshi. Greenblatt. Martha. La2Ni2O6: A New Double T′-type Nickelate with Infinite Ni1+/2+O2 Layers. Journal of the American Chemical Society. July 2006. 128. 28. 9050–9051. 10.1021/ja063031o. 16834375.
  21. Web site: Details of Selected Material Inorganic Materials Database. 23 April 2016.
  22. Sun . Hualei . Huo . Mengwu . Hu . Xunwu . Li . Jingyuan . Liu . Zengjia . Han . Yifeng . Tang . Lingyun . Mao . Zhongquan . Yang . Pengtao . Wang . Bosen . Cheng . Jinguang . Yao . Dao-Xin . Zhang . Guang-Ming . Wang . Meng . 2023-07-12 . Signatures of superconductivity near 80 K in a nickelate under high pressure . Nature . 621 . 7979 . 493–498 . en . 10.1038/s41586-023-06408-7 . 37437603 . 259843168 . 0028-0836. 2305.09586 .
  23. Poltavets. Viktor V.. Bulk Magnetic Order in a Two-Dimensional. Physical Review Letters. 1 January 2010. 104. 20. 206403. 10.1103/PhysRevLett.104.206403. 20867044. 21 April 2016. 2010PhRvL.104t6403P. 1003.3276. 14882438.
  24. Sreedhar. K.. Rao. C. N. R.. Electrical and magnetic properties of La2−xSrxNiO4: A tentative phase diagram. Materials Research Bulletin. October 1990. 25. 10. 1235–1242. 10.1016/0025-5408(90)90079-H.
  25. Fratello. V.J.. Berkstresser. G.W.. Brandle. C.D.. Ven Graitis. A.J.. September 1996. Nickel containing perovskites. Journal of Crystal Growth. en. 166. 1–4. 878–882. 10.1016/0022-0248(95)00474-2. 1996JCrGr.166..878F .
  26. Web site: details of selected material. Atom Work. 23 April 2016.
  27. García-Muñoz. J. L.. Aranda. M. A. G.. Alonso. J. A.. Martínez-Lope. M. J.. Structure and charge order in the antiferromagnetic band-insulating phase of NdNiO3. Physical Review B. 28 April 2009. 79. 13. 134432. 10.1103/PhysRevB.79.134432. 2009PhRvB..79m4432G.
  28. Web site: details of selected material. Atom Work. 23 April 2016.
  29. Web site: details of selected material. Atom Work. 23 April 2016.
  30. Popova. M. N.. Romanov. E. A.. Klimin. S. A.. Chukalina. E. P.. Mill. B. V.. Dhalenne. G.. Stark Structure and Exchange Splittings of Nd3+ Ion Levels in Chain Nickelate Nd2BaNiO5. Physics of the Solid State. 2005. 47. 8. 1497–1503. 21 April 2016. 2005PhSS...47.1497P. 10.1134/1.2014500. 122042627.
  31. Web site: materials database 16998. 23 April 2016.
  32. Liu. Xiao Qiang. Wu. Yong Jun. Chen. Xiang Ming. Zhu. Hai Yan. Temperature-stable giant dielectric response in orthorhombic samarium strontium nickelate ceramics. Journal of Applied Physics. 2009. 105. 5. 054104–054104–4. 10.1063/1.3082034. 2009JAP...105e4104L.
  33. Book: Lafez. P.. Ruello. P.. Edely. M.. Lamont. Paul W.. Leading-Edge Materials Science Research. Nova Publishers. 9781600217982. 277–310. https://books.google.com/books?id=3-3FL5ii01YC&pg=PA277. 21 April 2016. en. Electrical and Infrared Properties of RF Sputtering of Rare Earth Nickelate (RNiO3) Thin Films with Metal Insulator-Transitions. 2008.
  34. Web site: Materials database. 23 April 2016.
  35. Nasani. Narendar. Oliveira Rocha. Carlos Miguel. Kovalevsky. Andrei V.. Otero Irurueta. Gonzalo. Populoh. Sascha. Thiel. Philipp. Weidenkaff. Anke. Neto da Silva. Fernando. Fagg. Duncan P.. Exploring the Thermoelectric Performance of BaGd2NiO5 Haldane Gap Materials. Inorganic Chemistry. 8 February 2017. 56. 4. 2354–2362. 10.1021/acs.inorgchem.7b00049. 28177255.
  36. Web site: materials database. 23 April 2016.
  37. García Matres. E.. Rodríguez Carvajal. J.. Martínez. J.L.. Salinas Sánchez. A.. Sáez Puche. R.. Magnetic structure of Ho2BaNiO5. Solid State Communications. February 1993. 85. 7. 553–559. 10.1016/0038-1098(93)90306-8. 1993SSCom..85..553G.
  38. Web site: materials database. 23 April 2016.
  39. Alonso. J. A.. Amador. J.. Rasines. I.. Soubeyroux. J. L.. Er2BaNiO5: structure refinement using neutron powder diffraction data. Acta Crystallographica Section C. 15 February 1991. 47. 2. 249–251. 10.1107/S0108270190008873.
  40. Web site: materials database. 23 April 2016.
  41. Salinas Sánchez. A.. Sáez Puche. R.. Rodríguez Carvajal. J.. Martínez. J.L.. Structural characterization of R2BaNiO5 (R = Tm and Yb): polymorphism for R = Tm. Solid State Communications. May 1991. 78. 6. 481–488. 10.1016/0038-1098(91)90361-X. 1991SSCom..78..481S.
  42. Web site: materials database. 23 April 2016.
  43. Web site: Gibert. Marta. Catalano. Sara. Fowlie. Jennifer. Researchkelates. dqmp.unige.ch. 21 April 2016.
  44. Web site: Materials database.
  45. Kim. Seung-Joo. Demazeau. Gérard. Alonso. José A.. Choy. Jin-Ho. High pressure synthesis and crystal structure of a new Ni(III) perovskite: TlNiO3. Journal of Materials Chemistry. 2001. 11. 2. 487–492. 10.1039/b007043m.
  46. Ishiwata. Shintaro. Azuma. Masaki. Takano. Mikio. Nishibori. Eiji. Takata. Masaki. Sakata. Makoto. Kato. Kenichi. High pressure synthesis, crystal structure and physical properties of a new Ni(II) perovskite BiNiO3. Journal of Materials Chemistry. 29 November 2002. 12. 12. 3733–3737. 10.1039/b206022a.
  47. Pugaczowa-Michalska. M.. Kaczkowski. J.. DFT+U studies of triclinic phase of BiNiO3 and La-substituted BiNiO3. Computational Materials Science. January 2017. 126. 407–417. 10.1016/j.commatsci.2016.10.014.