Orders of magnitude (energy) explained

This list compares various energies in joules (J), organized by order of magnitude.

Below 1 J

List of orders of magnitude for energy! Factor (joules)! SI prefix! Value! Item
10−34 6.626×10−34J Photon energy of a photon with a frequency of 1 hertz.[1]
 8x10-34JAverage kinetic energy of translational motion of a molecule at the lowest temperature reached (38 picokelvin[2])
10−30quecto- (qJ)
10−28 6.6×10−28JEnergy of a typical AM radio photon (1 MHz) (4×10−9 eV)[3]
10−27ronto- (rJ)
10−24yocto- (yJ)1.6×10−24JEnergy of a typical microwave oven photon (2.45 GHz) (1×10−5 eV)[4] [5]
10−23 2×10−23J Average kinetic energy of translational motion of a molecule in the Boomerang Nebula, the coldest place known outside of a laboratory, at a temperature of 1 kelvin[6] [7]
10−22 2–3000×10−22JEnergy of infrared light photons
10−21zepto- (zJ)1.7×10−21J1kJ/mol, converted to energy per molecule[8]
2.1×10−21JThermal energy in each degree of freedom of a molecule at 25 °C (kT/2) (0.01 eV)[9]
2.856×10−21JBy Landauer's principle, the minimum amount of energy required at 25 °C to change one bit of information
3–7×10−21JEnergy of a van der Waals interaction between atoms (0.02–0.04 eV)[10] [11]
4.1×10−21JThe "kT" constant at 25 °C, a common rough approximation for the total thermal energy of each molecule in a system (0.03 eV)[12]
7–22×10−21JEnergy of a hydrogen bond (0.04 to 0.13 eV)[13]
10−20 4.5×10−20JUpper bound of the mass–energy of a neutrino in particle physics (0.28 eV)[14] [15]
10−19 1.6×10−19J ≈1 electronvolt (eV)[16]
3–5×10−19J Energy range of photons in visible light (≈1.6–3.1 eV)[17] [18]
3–14×10−19JEnergy of a covalent bond (2–9 eV)[19]
5–200×10−19JEnergy of ultraviolet light photons
10−18 atto- (aJ) 2.18×10−18J Ground state ionization energy of hydrogen (13.6 eV)
10−17 2–2000×10−17JEnergy range of X-ray photons[20]
10−16      
10−15 femto- (fJ) 3 × 10−15J Average kinetic energy of one human red blood cell.[21] [22] [23]
10−14 1×10−14JSound energy (vibration) transmitted to the eardrums by listening to a whisper for one second.[24] [25] [26]
> 2×10−14JEnergy of gamma ray photons
2.7×10−14J Upper bound of the mass–energy of a muon neutrino[27] [28]
8.2×10−14J Rest mass–energy of an electron[29] (0.511 MeV)[30]
10−13 1.6×10−13J 1 megaelectronvolt (MeV)[31]
2.3×10−13J Energy released by a single event of two protons fusing into deuterium (1.44 megaelectronvolt MeV)[32]
10−12 pico- (pJ) 2.3×10−12J Kinetic energy of neutrons produced by DT fusion, used to trigger fission (14.1 MeV)[33] [34]
10−11 3.4×10−11J Average total energy released in the nuclear fission of one uranium-235 atom (215 MeV)[35] [36]
10−10 1.492×10−10JMass-energy equivalent of 1 u[37] (931.5 MeV)[38]
1.503×10−10J Rest mass–energy of a proton[39] (938.3 MeV)[40]
1.505×10−10J Rest mass–energy of a neutron[41] (939.6 MeV)[42]
1.6×10−10J 1 gigaelectronvolt (GeV)[43]
3×10−10J Rest mass–energy of a deuteron[44]
6×10−10J Rest mass–energy of an alpha particle[45]
7×10−10J Energy required to raise a grain of sand by 0.1mm (the thickness of a piece of paper).[46]
10−9nano- (nJ)1.6×10−9J 10 GeV[47]
8×10−9J Initial operating energy per beam of the CERN Large Electron Positron Collider in 1989 (50 GeV)[48] [49]
10−8 1.3×10−8J Mass–energy of a W boson (80.4 GeV)[50] [51]
1.5×10−8J Mass–energy of a Z boson (91.2 GeV)[52] [53]
1.6×10−8J 100 GeV[54]
2×10−8J Mass–energy of the Higgs Boson (125.1 GeV)[55]
6.4×10−8J Operating energy per proton of the CERN Super Proton Synchrotron accelerator in 1976[56] [57]
10−7 1×10−7J ≡ 1 erg
1.6×10−7J 1 TeV (teraelectronvolt),[58] about the kinetic energy of a flying mosquito[59]
10−6 micro- (μJ) 1.04×10−6J Energy per proton in the CERN Large Hadron Collider in 2015 (6.5 TeV)[60] [61]
10−5      
10−4   1.0×10−4J Energy released by a typical radioluminescent wristwatch in 1 hour[62] [63] (1 μCi × 4.871 MeV × 1 hr)
10−3 milli- (mJ) 3.0×10−3J Energy released by a P100 atomic battery in 1 hour[64] (2.4 V × 350 nA × 1 hr)
10−2 centi- (cJ) 4.0×10−2J Use of a typical LED for 1 second[65] (2.0 V × 20 mA × 1 s)
10−1deci- (dJ)1.1×10−1J Energy of an American half-dollar falling 1 metre[66] [67]

1 to 105 J

100J1J ≡ 1 N·m (newtonmetre)
1J ≡ 1 W·s (watt-second)
1J Kinetic energy produced as an extra small apple (~100 grams[68]) falls 1 meter against Earth's gravity[69]
1J Energy required to heat 1 gram of dry, cool air by 1 degree Celsius[70]
1.4J ≈ 1 ft·lbf (foot-pound force)[71]
4.184J ≡ 1 thermochemical calorie (small calorie)
4.1868J ≡ 1 International (Steam) Table calorie[72]
8J Greisen-Zatsepin-Kuzmin theoretical upper limit for the energy of a cosmic ray coming from a distant source[73] [74]
101deca- (daJ)1×101J Flash energy of a typical pocket camera electronic flash capacitor @ [75] [76]
5×101J The most energetic cosmic ray ever detected.[77] Most likely a single proton traveling only very slightly slower than the speed of light.[78]
102hecto- (hJ)1.25×102JKinetic energy of a regulation (standard) baseball (5.1 oz / 145 g)[79] thrown at 93 mph / 150 km/h (MLB average pitch speed).[80]
1.5×102to 3.6×102J Energy delivered by a biphasic external electric shock (defibrillation), usually during adult cardiopulmonary resuscitation for cardiac arrest.
3×102J Energy of a lethal dose of X-rays[81]
3×102J Kinetic energy of an average person jumping as high as they can[82] [83] [84]
3.3×102J Energy to melt 1 g of ice[85]
> 3.6×102J Kinetic energy of 800 gram[86] standard men's javelin thrown at > 30 m/s[87] by elite javelin throwers[88]
5–20×102J Energy output of a typical photography studio strobe light in a single flash[89]
6×102J Kinetic energy of 2 kg[90] standard men's discus thrown at 24.4 m/s by the world record holder Jürgen Schult[91]
6×102J Use of a 10-watt flashlight for 1 minute
7.5×102J A power of 1 horsepower applied for 1 second
7.8×102J Kinetic energy of 7.26 kg[92] standard men's shot thrown at 14.7 m/s by the world record holder Randy Barnes[93]
8.01×102JAmount of work needed to lift a man with an average weight (81.7 kg) one meter above Earth (or any planet with Earth gravity)
103kilo- (kJ)1.1×103J ≈ 1 British thermal unit (BTU), depending on the temperature
1.4×103J Total solar radiation received from the Sun by 1 square meter at the altitude of Earth's orbit per second (solar constant)[94]
1.8×103J Kinetic energy of M16 rifle bullet (5.56×45mm NATO M855, 4.1 g fired at 930 m/s)[95]
~1.4×103J Kinetic energy of a 5.45x39mm AK-74 bullet (3.6 g fired at 880 m/s)[96]
1.7×103J Kinetic energy of a 3.56 g .223 Remington M193 M16 bullet fired at 975 m/s
3.3×103J Kinetic energy of a 9.33 g 7.62×51mm NATO rifle cartridge fired at -->
2.3×103J Energy to vaporize 1 g of water into steam[97]
3×103J Lorentz force can crusher pinch[98]
3.4×103J Kinetic energy of world-record men's hammer throw (7.26 kg[99] thrown at 30.7 m/s[100] in 1986)[101]
3.6×103J ≡ 1 W·h (watt-hour)
4.2×103J Energy released by explosion of 1 gram of TNT[102]
4.2×103J ≈ 1 food Calorie (large calorie)
~7×103J Muzzle energy of an elephant gun, e.g. firing a .458 Winchester Magnum[103]
8.5×103JKinetic energy of a regulation baseball thrown at the speed of sound (343m/s = 767mph = 1,235km/h. Air, 20°C).[104]
9×103J Energy in an alkaline AA battery[105]
104 1.7×104J Energy released by the metabolism of 1 gram of carbohydrates[106] or protein[107]
3.8×104J Energy released by the metabolism of 1 gram of fat[108]
4–5×104J Energy released by the combustion of 1 gram of gasoline[109]
5×104J Kinetic energy of 1 gram of matter moving at 10 km/s[110]
105 Kinetic energy of an automobile at highway speeds (1 to 5 tons[111] at or)[112]
5×105JKinetic energy of 1 gram of a meteor hitting Earth[113]

106 to 1011 J

106mega- (MJ)1×106J Kinetic energy of a 2 tonne vehicle at 32 metres per second (115 km/h or 72 mph)[114]
1.2×106J Approximate food energy of a snack such as a Snickers bar (280 food calories)[115]
3.6×106J = 1 kWh (kilowatt-hour) (used for electricity)
4.2×106J Energy released by explosion of 1 kilogram of TNT
8.4×106J Recommended food energy intake per day for a moderately active woman (2000 food calories)[116] [117]
9.1×106JKinetic energy of a regulation baseball thrown at Earth's escape velocity (First cosmic velocity ≈ 11.186 km/s = 25,020 mph = 40,270 km/h).[118]
107 1×107JKinetic energy of the armor-piercing round fired by the ISU-152 assault gun[119]
1.1×107J Recommended food energy intake per day for a moderately active man (2600 food calories)[120]
3.3×107J Kinetic energy of a 23 lb projectile fired by the Navy's mach 8 railgun.[121]
3.7×107J$1 of electricity at a cost of $0.10/kWh (the US average retail cost in 2009)[122] [123] [124]
4×107JEnergy from the combustion of 1 cubic meter of natural gas[125]
4.2×107JCaloric energy consumed by Olympian Michael Phelps on a daily basis during Olympic training[126]
6.3×107JTheoretical minimum energy required to accelerate 1 kg of matter to escape velocity from Earth's surface (ignoring atmosphere)[127]
9×107JTotal mass-energy of 1 microgram of matter (25 kWh)
108 1×108J Kinetic energy of a 55 tonne aircraft at typical landing speed (59 m/s or 115 knots)
1.1×108J ≈ 1 therm, depending on the temperature
1.1×108J ≈ 1 Tour de France, or ~90 hours[128] ridden at 5 W/kg[129] by a 65 kg rider[130]
7.3×108J ≈ Energy from burning 16 kilograms of oil (using 135 kg per barrel of light crude)
109giga- (GJ)1–10×109J Energy in an average lightning bolt[131] (thunder)
1.1×109J Magnetic stored energy in the world's largest toroidal superconducting magnet for the ATLAS experiment at CERN, Geneva[132]
1.2×109J Inflight 100-ton Boeing 757-200 at 300 knots (154 m/s)
1.4×109J Theoretical minimum amount of energy required to melt a tonne of steel (380 kWh)[133] [134]
2×109J Energy of an ordinary gasoline tank of a car.<-- gasoline kg/m3 -->[135] [136]
2×109J The unit of energy in Planck units[137]
3×109J Inflight 125-ton Boeing 767-200 flying at 373 knots (192 m/s)
3.3×109J Approximate average amount of energy expended by a human heart muscle over an 80-year lifetime[138] [139]
3.6×109J= 1 MW·h (megawatt-hour)
4.2×109J Energy released by explosion of 1 ton of TNT.
4.5×109J Average annual energy usage of a standard refrigerator[140] [141]
6.1×109J ≈ 1 bboe (barrel of oil equivalent)[142]
1010 1.9×1010J Kinetic energy of an Airbus A380 at cruising speed (560 tonnes at 511 knots or 263 m/s)
4.2×1010J ≈ 1 toe (ton of oil equivalent)
4.6×1010J Yield energy of a Massive Ordnance Air Blast bomb, the second most powerful non-nuclear weapon ever designed[143] [144]
7.3×1010J Energy consumed by the average U.S. automobile in the year 2000[145] [146] [147]
8.6×1010J ≈ 1 MW·d (megawatt-day), used in the context of power plants (24 MW·h)[148]
8.8×1010J Total energy released in the nuclear fission of one gram of uranium-235[149]
9×1010JTotal mass-energy of 1 milligram of matter (25 MW·h)
1011 1.1×1011JKinetic energy of a regulation baseball thrown at lightning speed (120 km/s = 270,000 mph = 435,000 km/h).[150]
2.4×1011J Approximate food energy consumed by an average human in an 80-year lifetime.[151]

1012 to 1017 J

1012tera- (TJ)3.4×1012JMaximum fuel energy of an Airbus A330-300 (97,530 liters[152] of Jet A-1[153])[154]
3.6×1012J1 GW·h (gigawatt-hour)[155]
4×1012JElectricity generated by one 20-kg CANDU fuel bundle assuming ~29%[156] thermal efficiency of reactor[157] [158]
3.7×1012JAverage orbital kinetic energy of the Mir space station (124 tonnes at about 7680 m/s)[159] -->
4.2×1012JEnergy released by explosion of 1 kiloton of TNT[160]
6.4×1012J Energy contained in jet fuel in a Boeing 747-100B aircraft at max fuel capacity (183,380 liters[161] of Jet A-1)[162]
1013 1.1×1013J Energy of the maximum fuel an Airbus A380 can carry (320,000 liters[163] of Jet A-1)[164]
1.2×1013J Orbital kinetic energy of the International Space Station (417 tonnes[165] at 7.7 km/s[166])[167]
6.3×1013J Yield of the Little Boy atomic bomb dropped on Hiroshima in World War II (15 kilotons)[168] [169]
9×1013J Theoretical total mass–energy of 1 gram of matter (25 GW·h) [170]
1014 1.8×1014JEnergy released by annihilation of 1 gram of antimatter and matter (50 GW·h)
3.75×1014J Total energy released by the Chelyabinsk meteor.[171]
6×1014J Energy released by an average hurricane in 1 second[172]
1015peta- (PJ) > 1015J Energy released by a severe thunderstorm[173]
1×1015J Yearly electricity consumption in Greenland as of 2008[174] [175]
4.2×1015J Energy released by explosion of 1 megaton of TNT[176]
1016 1×1016J Estimated impact energy released in forming Meteor Crater
1.1×1016J Yearly electricity consumption in Mongolia as of 2010[177]
6.3×1016JYield of Castle Bravo, the most powerful nuclear weapon tested by the United States[178]
7.9×1016JKinetic energy of a regulation baseball thrown at 99% the speed of light (KE = mc^2 × [γ-1], where the Lorentz factor γ ≈ 7.09).[179]
9×1016J Mass–energy of 1 kilogram of antimatter (or matter)[180]
1017 1.4×1017J Seismic energy released by the 2004 Indian Ocean earthquake[181]
1.7×1017J Total energy from the Sun that strikes the face of the Earth each second[182]
2.1×1017J Yield of the Tsar Bomba, the most powerful nuclear weapon ever tested (50 megatons)[183] [184]
2.552×1017JTotal energy of the 2022 Hunga Tonga–Hunga Haʻapai eruption[185] [186]
4.2×1017J Yearly electricity consumption of Norway as of 2008[187]
4.5×1017J Approximate energy needed to accelerate one ton to one-tenth of the speed of light
8×1017J Estimated energy released by the eruption of the Indonesian volcano, Krakatoa, in 1883[188] [189] [190]

1018 to 1023 J

10181.4×1018J Yearly electricity consumption of South Korea as of 2009[191]
10191019JThermal energy released by the 1991 Pinatubo eruption
1.1×1019JSeismic energy released by the 1960 Valdivia Earthquake[192]
1.2×1019JExplosive yield of global nuclear arsenal[193] (2.86 Gigatons)
1.4×1019J Yearly electricity consumption in the U.S. as of 2009[194]
1.4×1019J Yearly electricity production in the U.S. as of 2009[195] [196]
5×1019J Energy released in 1 day by an average hurricane in producing rain (400 times greater than the wind energy)
6.4×1019J Yearly electricity consumption of the world [197] [198]
6.8×1019J Yearly electricity generation of the world [199]
6.7×1019J Total energy released by the magnitude 8.8 2010 Chile earthquake-->
10201.4×1020JTotal energy released in the 1815 Mount Tambora eruption[200]
2.4×1020JTotal latent heat energy released by Hurricane Katrina[201]
5×1020J Total world annual energy consumption in 2010[202] [203]
8×1020J Estimated global uranium resources for generating electricity 2005[204] [205] [206] [207]
1021zetta- (ZJ) 6.9×1021J Estimated energy contained in the world's natural gas reserves as of 2010[208]
7.0×1021JThermal energy released by the Toba eruption
7.9×1021J Estimated energy contained in the world's petroleum reserves as of 2010[209]
9.3×1021J Annual net uptake of thermal energy by the global ocean during 2003-2018[210]
10221.2×1022JSeismic energy of a magnitude 11 earthquake on Earth (M 11)[211]
1.5×1022J Total energy from the Sun that strikes the face of the Earth each day[212]
1.94×1022JImpact event that formed the Siljan Ring, the largest impact structure in Europe[213]
2.4×1022J Estimated energy contained in the world's coal reserves as of 2010[214]
2.9×1022J Identified global uranium-238 resources using fast reactor technology
3.9×1022J Estimated energy contained in the world's fossil fuel reserves as of 2010[215]
8.03×1022JTotal energy of the 2004 Indian Ocean earthquake[216]
10231.5×1023JTotal energy of the 1960 Valdivia earthquake[217]
2.2×1023J Total global uranium-238 resources using fast reactor technology
3×1023J The energy released in the formation of the Chicxulub Crater in the Yucatán Peninsula[218]

Over 1023 J

10242.31×1024JTotal energy of the Sudbury impact event[219]
3.8×1024JRadiative heat energy released from the Earth’s surface each year
5.5×1024J Total energy from the Sun that strikes the face of the Earth each year[220]
10254×1025JTotal energy of the Carrington Event in 1859[221]
1026 >1026J Estimated energy of early Archean asteroid impacts[222]
3.828×1026J Total radiative energy output of the Sun each second[223]
1027 ronna- (RJ) 1×1027J Estimated energy released by the impact that created the Caloris basin on Mercury[224]
1×1027JUpper limit of the most energetic solar flares possible (X1000)[225]
~3×1027JEstimated energy required to evaporate all water on the surface of Earth
4.2×1027JKinetic energy of a regulation baseball thrown at the speed of the Oh-My-God particle, itself a cosmic ray proton with the kinetic energy of a baseball thrown at 60mph (~50J).[226]
1028 3.8×1028J Kinetic energy of the Moon in its orbit around the Earth (counting only its velocity relative to the Earth)[227] [228]
7×1028JTotal energy of the stellar superflare from V1355 Orionis[229] [230]
1029   2.1×1029J Rotational energy of the Earth[231] [232] [233]
1030 quetta- (QJ) 1.8×1030J Gravitational binding energy of Mercury
1031 2×1031JThe Theia Impact, the most energetic event ever in Earth's history[234] [235]
 3.3×1031J Total energy output of the Sun each day[236]
1032   1.71×1032J Gravitational binding energy of the Earth[237]
1033   2.7×1033J Earth's kinetic energy at perihelion in its orbit around the Sun[238] [239]
1034   1.2×1034J Total energy output of the Sun each year[240]
10353.5×1035JThe most energetic stellar superflare to date (V2487 Ophiuchi)[241]
1039  2–5×1039 JEnergy of the giant flare (starquake) released by SGR 1806-20[242] [243] [244]
6.6×1039 J Theoretical total mass–energy of the Moon
1041 2.276×1041J Gravitational binding energy of the Sun[245]
5.4×1041J Theoretical total mass–energy of the Earth[246] [247]
1043 5×1043JTotal energy of all gamma rays in a typical gamma-ray burst if collimated[248] [249]
>1043 JTotal energy in a typical fast blue optical transient (FBOT)[250]
1044~1044 JAverage value of a Tidal Disruption Event (TDE) in optical/UV bands[251]
~1044 JEstimated kinetic energy released by FBOT CSS161010[252]
~1044J Total energy released in a typical supernova,[253] sometimes referred to as a foe
Approximate lifetime energy output of the Sun.
Total energy of a typical gamma-ray burst if collimated[254]
1045 ~1045 JEstimated energy released in a hypernova and pair instability supernova[255]
1045 JEnergy released by the energetic supernova, SN 2016aps[256] [257]
1.7–1.9×1045 J Energy released by hypernova ASASSN-15lh[258]
2.3×1045 JEnergy released by the energetic supernova PS1-10adi[259] [260]
>1045 JEstimated energy of a magnetorotational hypernova[261]
>1045J Total energy (energy in gamma rays+relativistic kinetic energy) of hyper-energetic gamma-ray burst if collimated[262] [263] [264] [265] [266]
1046 >1046JEstimated energy in theoretical quark-novae[267]
~1046JUpper limit of the total energy of a supernova[268] [269]
1.5×1046JTotal energy of the most energetic optical non-quasar transient, AT2021lwx[270]
10471045-47 JEstimated energy of stellar mass rotational black holes by vacuum polarization in an electromagnetic field[271] [272]
1047 JTotal energy of a very energetic and relativistic jetted Tidal Disruption Event (TDE)[273]
~1047 JUpper limit of collimated- corrected total energy of a gamma-ray burst[274] [275] [276]
1.8×1047J Theoretical total mass–energy of the Sun[277] [278]
5.4×1047J Mass–energy emitted as gravitational waves during the merger of two black holes, originally about 30 Solar masses each, as observed by LIGO (GW150914)[279]
8.6×1047J Mass–energy emitted as gravitational waves during the most energetic black hole merger observed until 2020 (GW170729)[280]
8.8×1047J GRB 080916C – formerly the most powerful gamma-ray burst (GRB) ever recorded – total/true[281] isotropic energy output estimated at 8.8 × 1047 joules (8.8 × 1054 erg), or 4.9 times the Sun's mass turned to energy[282]
10481048 JEstimated energy of a supermassive Population III star supernova, denominated "General Relativistic Instability Supernova."[283] [284]
~1.2×1048 JApproximate energy released in the most energetic black hole merging to date (GW190521), which originated the first intermediate-mass black hole ever detected[285] [286] [287] [288] [289]
1.2–3×1048 JGRB 221009A – the most powerful gamma-ray burst (GRB) ever recorded – total/true[290] isotropic energy output estimated at 1.2–3 × 1048 joules (1.2–3 × 1055 erg)[291] [292] [293]
1050≳1050 JUpper limit of isotropic energy (Eiso) of Population III stars Gamma-Ray Bursts (GRBs).[294]
1053>1053 JMechanical energy of very energetic so-called "quasar tsunamis"[295] [296]
  6×1053J Total mechanical energy or enthalpy in the powerful AGN outburst in the RBS 797[297]
1054 3×1054J Total mechanical energy or enthalpy in the powerful AGN outburst in the Hercules A (3C 348)[298]
1055   >1055J Total mechanical energy or enthalpy in the powerful AGN outburst in the MS 0735.6+7421,[299] Ophiucus Supercluster Explosion[300] and supermassive black holes mergings[301] [302]
1057~1057 JEstimated rotational energy of M87 SMBH and total energy of the most luminous quasars over Gyr time-scales[303] [304]
~2×1057 JEstimated thermal energy of the Bullet Cluster of galaxies[305]
1058~1058 JEstimated total energy (in shockwaves, turbulence, gases heating up, gravitational force) of galaxy clusters mergings[306]
  4×1058J Visible mass–energy in our galaxy, the Milky Way[307] [308]
1059   1×1059J Total mass–energy of our galaxy, the Milky Way, including dark matter and dark energy[309] [310]
1062   1–2×1062J Total mass–energy of the Virgo Supercluster including dark matter, the Supercluster which contains the Milky Way[311]
1069 4×1069J Estimated total mass–energy of the observable universe[312]

See also

Notes and References

  1. Web site: Planck's constant physics Britannica.com. britannica.com. 26 December 2016.
  2. Calculated: KE = (3/2) × Boltzmann constant × Temperature
  3. Calculated: E = hν = 6.626J-s × 1 Hz = 6.6J. In eV: 6.6J / 1.6J/eV = 4.1 eV.
  4. Web site: Frequency of a microwave oven. Howard. Cheung. 1998. The Physics Factbook. Elert. Glenn. 2022-01-25.
  5. Calculated: E = hν = 6.626J-s × 2.45 Hz = 1.62J. In eV: 1.62J / 1.6J/eV = 1.0 eV.
  6. Web site: Boomerang Nebula boasts the coolest spot in the Universe. JPL. 13 November 2011. 27 August 2009. https://web.archive.org/web/20090827115717/http://jpl.nasa.gov/news/releases/97/coldspot.html. dead.
  7. Calculated: KE ≈ (3/2) × T × 1.38 = (3/2) × 1 × 1.38 ≈ 2.07J
  8. Calculated: 1J / 6.022 entities per mole = 1.7J per entity
  9. Calculated: 1.381J/K × 298.15 K / 2 = 2.1J
  10. Web site: Bond Lengths and Energies. Chem 125 notes. UCLA. 13 November 2011. https://web.archive.org/web/20110823121639/http://www.doe-mbi.ucla.edu/CHEM125/bonds.html. 23 August 2011. dead.
  11. Calculated: 2 to 4kJ/mol = 2J / 6.022 molecules/mol = 3.3J. In eV: 3.3J / 1.6J/eV = 0.02 eV. 4J / 6.022 molecules/mol = 6.7J. In eV: 6.7J / 1.6J/eV = 0.04 eV.
  12. Web site: Ansari. Anjum. Basic Physical Scales Relevant to Cells and Molecules. Physics 450. 13 November 2011.
  13. Calculated: 4 to 13kJ/mol. 4kJ/mol = 4J / 6.022 molecules/mol = 6.7J. In eV: 6.7J / 1.6 eV/J = 0.042 eV. 13kJ/mol = 13J / 6.022 molecules/mol = 2.2J. In eV: 13J / 6.022 molecules/mol / 1.6 eV/J = 0.13 eV.
  14. Thomas . S. . Abdalla . F. . Lahav . O. . Upper Bound of 0.28 eV on Neutrino Masses from the Largest Photometric Redshift Survey . 10.1103/PhysRevLett.105.031301 . Physical Review Letters . 105 . 3 . 2010 . 20867754. 0911.5291 . 2010PhRvL.105c1301T . 031301. 23349570 .
  15. Calculated: 0.28 eV × 1.6J/eV = 4.5J
  16. Web site: CODATA Value: electron volt. NIST. 4 November 2011.
  17. Web site: BASIC LAB KNOWLEDGE AND SKILLS. Visible wavelengths are roughly from 390 nm to 780 nm. 5 November 2011. https://web.archive.org/web/20130515121940/http://www.sci.sdsu.edu/classes/chemistry/chem467l/mardahl/basic.html. 15 May 2013. dead.
  18. Calculated: E = hc/λ. E = 6.6 kg-m/s × 3 m/s / (780 m) = 2.5J. E_390 _nm = 6.6 kg-m/s × 3 m/s / (390 m) = 5.1J
  19. Calculated: 50 kcal/mol × 4.184J/calorie / 6.0e23 molecules/mol = 3.47J. (3.47J / 1.60 eV/J = 2.2 eV.) and 200 kcal/mol × 4.184J/calorie / 6.0e23 molecules/mol = 1.389J. (7.64J / 1.60 eV/J = 8.68 eV.)
  20. Web site: Wavelength, Frequency, and Energy. https://web.archive.org/web/20011118152730/http://imagine.gsfc.nasa.gov/docs/science/know_l1/spectrum_chart.html. dead. 18 November 2001. Imagine the Universe. NASA. 15 November 2011.
  21. Phillips . Kevin . Jacques . Steven . McCarty . Owen . How much does a cell weigh?. Physical Review Letters . 109 . 11 . 118105 . 2012 . 10.1103/PhysRevLett.109.118105 . 23005682 . Roughly 27 picograms . 2012PhRvL.109k8105P. 3621783 .
  22. Web site: Our Bodies' Velocities, By the Numbers. Bob Berman. 19 August 2016. The [...] blood [...] flow[s] at an average speed of 3 to 4 mph.
  23. Calculated: 1/2 × 27 g × (3.5 miles per hour) = 3J
  24. Web site: Physics of the Body. Notre Dame. 19 August 2016. 6 November 2016. https://web.archive.org/web/20161106160152/https://www3.nd.edu/~nsl/Lectures/mphysics/Medical%20Physics/Part%20I.%20Physics%20of%20the%20Body/Chapter%204.%20Acoustics%20of%20the%20Body/4.3%20Physics%20of%20the%20ear/Physics%20of%20the%20ear.pdf. dead. . "The eardrum is a [...] membran[e] with an area of 65 mm2."
  25. Web site: Intensity and the Decibel Scale. Physics Classroom. 19 August 2016.
  26. Calculated: two eardrums ≈ 1 cm2. 1 W/m2 × 1 m2 × 1 s = 1J
  27. Book: Neutrinos in physics and astrophysics: from 10–33 to 1028 cm: TASI 98 : Boulder, Colorado, USA, 1–26 June 1998. 2000. World Scientific. 978-981-02-3887-2. Thomas J Bowles. The Experimental Search for Finite Neutrino Mass. P. Langacker. 11 November 2011. 354. an upper limit ov m_v_u < 170 keV.
  28. Calculated: 170 eV × 1.6J/eV = 2.7J
  29. Web site: electron mass energy equivalent. NIST. 4 November 2011.
  30. Web site: CODATA Value: electron mass energy equivalent in MeV . 2023-08-13 . physics.nist.gov.
  31. Web site: Conversion from eV to J. NIST. 4 November 2011.
  32. Web site: How much energy is released when hydrogen is fused to produce one kilo of helium?. 11 November 2017. 21 July 2021.
  33. Web site: Muller. Richard A.. The Sun, Hydrogen Bombs, and the physics of fusion. 5 November 2011. 2002. The neutron comes out with high energy of 14.1 MeV. https://web.archive.org/web/20120402214226/http://muller.lbl.gov/teaching/physics10/old%20physics%2010/chapters%20(old)/7-fusion.htm. 2 April 2012. dead.
  34. Web site: Conversion from eV to J. NIST. 4 November 2011.
  35. Web site: Energy From Uranium Fission. HyperPhysics. 8 November 2011.
  36. Web site: Conversion from eV to J. NIST. 4 November 2011.
  37. Web site: CODATA Value: atomic mass constant energy equivalent . 2023-08-13 . physics.nist.gov.
  38. Web site: CODATA Value: atomic mass constant energy equivalent in MeV . 2023-08-13 . physics.nist.gov.
  39. Web site: proton mass energy equivalent. NIST. 4 November 2011.
  40. Web site: CODATA Value: proton mass energy equivalent in MeV . 2023-08-13 . physics.nist.gov.
  41. Web site: neutron mass energy equivalent. NIST. 4 November 2011.
  42. Web site: CODATA Value: neutron mass energy equivalent in MeV . 2023-08-13 . physics.nist.gov.
  43. Web site: Conversion from eV to J. NIST. 4 November 2011.
  44. Web site: deuteron mass energy equivalent. NIST. 4 November 2011.
  45. Web site: alpha particle mass energy equivalent. NIST. 4 November 2011.
  46. Calculated: 7 g × 9.8 m/s2 × 1 m
  47. Web site: Conversion from eV to J. NIST. 4 November 2011.
  48. Web site: Myers. Stephen. The LEP Collider. CERN. 14 November 2011. the LEP machine energy is about 50 GeV per beam. 25 August 2010. https://web.archive.org/web/20100825192922/http://sl-div.web.cern.ch/sl-div/history/lep_doc.html. dead.
  49. Calculated: 50 eV × 1.6J/eV = 8J
  50. Web site: W. https://archive.today/20120717002128/http://pdglive.lbl.gov/Rsummary.brl?nodein=S043. dead. 17 July 2012. PDG Live. Particle Data Group. 4 November 2011.
  51. Web site: Conversion from eV to J. NIST. 4 November 2011.
  52. Amsler . C. . Doser . M. . Antonelli . M. . Asner . D. . Babu . K. . Baer . H. . Band . H. . Barnett . R. . Bergren . E. . Beringer . J. . Bernardi . G. . Bertl . W. . Bichsel . H. . Biebel . O. . Bloch . P. . Blucher . E. . Blusk . S. . Cahn . R. N. . Carena . M. . Caso . C. . Ceccucci . A. . Chakraborty . D. . Chen . M. -C. . Chivukula . R. S. . Cowan . G. . Dahl . O. . d'Ambrosio . G. . Damour . T. . De Gouvêa . A. . Degrand . T. . Review of Particle Physics⁎ . 10.1016/j.physletb.2008.07.018 . Physics Letters B . 667 . 1 . 1–6 . 2008 . https://archive.today/20120712165412/http://pdglive.lbl.gov/Rsummary.brl?nodein=S044&fsizein=1 . dead . 12 July 2012 . 2008PhLB..667....1A . 29 . 1854/LU-685594 . 227119789 . free .
  53. Web site: Conversion from eV to J. NIST. 4 November 2011.
  54. Web site: Conversion from eV to J. NIST. 4 November 2011.
  55. ATLAS . CMS . ATLAS experiment. Compact Muon Solenoid. 1503.07589 . Combined Measurement of the Higgs Boson Mass in pp Collisions at √s=7 and 8 TeV with the ATLAS and CMS Experiments. 26 March 2015 . 10.1103/PhysRevLett.114.191803 . 26024162 . 2015PhRvL.114s1803A . 114 . 19 . 191803 . Physical Review Letters. 1353272 .
  56. Web site: Adams. John. 400 GeV Proton Synchrotron. Excertp from the CERN Annual Report 1976. CERN. 14 November 2011. A circulating proton beam of 400 GeV energy was first achieved in the SPS on 17 June 1976. 26 October 2011. https://web.archive.org/web/20111026162037/http://sl-div.web.cern.ch/sl-div/history/sps_doc.html. dead.
  57. Calculated: 400 eV × 1.6J/eV = 6.4J
  58. Web site: Conversion from eV to J. NIST. 4 November 2011.
  59. Web site: Chocolate bar yardstick. 24 January 2014. A TeV is actually a very tiny amount of energy. A popular analogy is to a flying mosquito.. https://web.archive.org/web/20140226141339/http://www.cernlove.org/blog/2010/04/chocolate-bar-yardstick/. 26 February 2014. dead.
  60. Web site: First successful beam at record energy of 6.5 TeV. 28 April 2015.
  61. Calculated: 6.5 eV per beam × 1.6J/eV = 1.04J
  62. Web site: The radioactive series of radium-226 . CERN.
  63. Terrill . James G. Jr. . Ingraham . Samuel C. II . Moeller . Dade W. . 1954 . Radium in the Healing Arts and in Industry: Radiation Exposure in the United States . Public Health Reports . en . 69 . 3 . 255–262 . 10.2307/4588736. 4588736 . 13134440 . 2024184 .
  64. Web site: NanoTritium™: Next-gen Tritium Battery with Decade-Long Betavoltaic Battery Power CityLabs . 2022-04-04 . en-US.
  65. Web site: LED - Basic Red 5mm - COM-09590 - SparkFun Electronics . 2022-04-04 . www.sparkfun.com.
  66. Web site: Coin specifications . United States Mint . 2 November 2011 . 11.340 g . 18 February 2015 . https://web.archive.org/web/20150218061037/http://www.usmint.gov/about_the_mint/?action=coin_specifications . dead .
  67. Calculated: m×g×h = 11.34 kg × 9.8 m/s × 1 m = 1.1J
  68. Web site: Apples, raw, with skin (NDB No. 09003) . USDA Nutrient Database . USDA . 8 December 2011 . dead . https://web.archive.org/web/20150303184216/http://www.nal.usda.gov/fnic/foodcomp/search/ . 3 March 2015 .
  69. Calculated: m×g×h = 1 kg × 9.8 m/s × 1 m = 1J
  70. Web site: Specific Heat of Dry Air. Engineering Toolbox. 2 November 2011.
  71. Web site: Appendix B8—Factors for Units Listed Alphabetically. NIST Guide for the Use of the International System of Units (SI). NIST. 1.355818. 2 July 2009.
  72. Web site: Footnotes. NIST Guide to the SI. NIST. 2 July 2009.
  73. Web site: Physical Motivations. ULTRA Home Page (EUSO project). Dipartimento di Fisica di Torino. 12 November 2011.
  74. Calculated: 5 eV × 1.6J/ev = 8J
  75. Web site: Notes on the Troubleshooting and Repair of Electronic Flash Units and Strobe Lights and Design Guidelines, Useful Circuits, and Schematics. 8 December 2011. The energy storage capacitor for pocket cameras is typically 100 to 400 uF at 330 V (charged to 300 V) with a typical flash energy of 10 W-s..
  76. Web site: Teardown: Digital Camera Canon PowerShot . 2 September 2012. 6 June 2013. electroelvis.com. https://web.archive.org/web/20130801014811/http://electroelvis.com/2012/09/02/teardown-digital-camera-canon-powershot/. 1 August 2013. dead.
  77. Web site: The Fly's Eye (1981–1993). HiRes. 14 November 2011. 15 August 2009. https://web.archive.org/web/20090815102123/http://www.cosmic-ray.org/reading/flyseye.html#SEC10. dead.
  78. Bird, D. J. . March 1995 . Detection of a cosmic ray with measured energy well beyond the expected spectral cutoff due to cosmic microwave radiation . Astrophysical Journal, Part 1 . 441 . 1 . 144–150 . 1995ApJ...441..144B . astro-ph/9410067 . 10.1086/175344 . 119092012 .
  79. Web site: 2024-01-04 . How Much Does a Baseball Weigh? - Baseball Weight Facts . 2024-01-04 . https://web.archive.org/web/20240104164703/https://www.nations-baseball.com/how-much-does-a-baseball-weigh/ . 4 January 2024 .
  80. Web site: 2024-01-04 . How fast does an average MLB pitcher throw? - TopVelocity . 2024-01-04 . https://web.archive.org/web/20240104164625/https://www.topvelocity.net/2023/06/05/how-fast-does-an-average-mlb-pitcher-throw/ . 4 January 2024 .
  81. Web site: Ionizing Radiation. General Chemistry Topic Review: Nuclear Chemistry. Bodner Research Web. 5 November 2011.
  82. Web site: Vertical Jump Test. Topend Sports. 12 December 2011. 41–50 cm (males) 31–40 cm (females).
  83. Web site: Mass of an Adult. The Physics Factbook. 13 December 2011. 70 kg.
  84. Kinetic energy at start of jump = potential energy at high point of jump. Using a mass of 70 kg and a high point of 40 cm => energy = m×g×h = 70 kg × 9.8 m/s × 40 m = 274J
  85. Web site: Latent Heat of Melting of some common Materials. Engineering Toolbox. 10 June 2013. 334kJ/kg.
  86. Web site: Javelin Throw – Introduction. IAAF. 12 December 2011.
  87. Web site: Young. Michael. Developing Event Specific Strength for the Javelin Throw. https://web.archive.org/web/20110813094040/http://www.indianathrower.com/documents/javelinthrowbiomechanics.pdf. dead. 13 August 2011. 13 December 2011. For elite athletes, the velocity of a javelin release has been measured in excess of 30m/s.
  88. Calculated: 1/2 × 0.8 kg × (30 m/s) = 360J
  89. Web site: Greenspun. Philip. Studio Photography. 13 December 2011. Most serious studio photographers start with about 2000 watts-seconds. dead. https://web.archive.org/web/20070929104533/http://photo.net/learn/studio/primer. 29 September 2007.
  90. Web site: Discus Throw – Introduction. IAAF. 12 December 2011.
  91. Calculated: 1/2 × 2 kg × (24.4 m/s) = 595.4J
  92. Web site: Shot Put – Introduction. IAAF. 12 December 2011.
  93. Calculated: 1/2 × 7.26 kg × (14.7 m/s) = 784J
  94. Kopp . G. . Lean . J. L. . Judith Lean . 10.1029/2010GL045777 . A new, lower value of total solar irradiance: Evidence and climate significance . Geophysical Research Letters . 38 . 1 . n/a . 2011 . 2011GeoRL..38.1706K . free .
  95. Web site: Intermediate power ammunition for automatic assault rifles. Modern Firearms. World Guns. 12 December 2011. dead. https://web.archive.org/web/20130810184827/http://world.guns.ru/ammunition/intermediate-cartridges-e.html. 10 August 2013.
  96. Web site: Intermediate power ammunition for automatic assault rifles. Modern Firearms. World Guns. 12 December 2011.
  97. Web site: Fluids – Latent Heat of Evaporation. Engineering Toolbox. 10 June 2013. 2257 kJ/kg.
  98. http://www.powerlabs.org/pssecc.htm powerlabs.org – The PowerLabs Solid State Can Crusher!
  99. Web site: Hammer Throw – Introduction. IAAF. 12 December 2011.
  100. Web site: Otto. Ralf M.. HAMMER THROW WR PHOTOSEQUENCE – YURIY SEDYKH. 4 November 2011. The total release velocity is 30.7 m/sec.
  101. Calculated: 1/2 × 7.26 kg × (30.7 m/s) = 3420J
  102. 4.2J/ton of TNT-equivalent × (1 ton/1 grams) = 4.2J/gram of TNT-equivalent
  103. Web site: .458 Winchester Magnum. Accurate Powder. Western Powders Inc. 7 September 2010. https://web.archive.org/web/20070928011847/http://www.accuratepowder.com/data/PerCaliber2Guide/Rifle/Standarddata(Rifle)/458Cal(11.63mm)/458%20Winchester%20Magnum%20pages%20339%20and%20340.pdf. 28 September 2007. dead.
  104. Web site: 2024-01-04 . speed of sound - Google Search . 2024-01-04 . https://web.archive.org/web/20240104165125/https://www.google.com/search?q=speed+of+sound#ip=1 . 4 January 2024 .
  105. Web site: Battery energy storage in various battery sizes. AllAboutBatteries.com. 15 December 2011. https://web.archive.org/web/20111204090808/http://www.allaboutbatteries.com/Energy-tables.html. 4 December 2011. dead.
  106. Web site: Energy Density of Carbohydrates. The Physics Factbook. 5 November 2011.
  107. Web site: Energy Density of Protein. The Physics Factbook. 5 November 2011.
  108. Web site: Energy Density of Fats. The Physics Factbook. 5 November 2011.
  109. Web site: Energy Density of Gasoline. The Physics Factbook. 5 November 2011.
  110. Calculated: E = 1/2 m×v = 1/2 × (1 kg) × (1 m/s) = 5J.
  111. Web site: List of Car Weights. LoveToKnow. 13 December 2011. 3000 to 12000 pounds.
  112. Calculated: Using car weights of 1 ton to 5 tons. E = 1/2 m×v = 1/2 × (1 kg) × (55 mph × 1600 m/mi / 3600 s/hr) = 3.0J. E = 1/2 × (5 kg) × (55 mph × 1600 m/mi / 3600 s/hr) = 15J.
  113. Web site: Muller. Richard A.. Kinetic Energy in a meteor. Old Physics 10 notes. 13 November 2011. https://web.archive.org/web/20120402214238/http://muller.lbl.gov/teaching/Physics10/old%20physics%2010/physics%2010%20notes/meteorKE.html. 2 April 2012. dead.
  114. Calculated: KE = 1/2 × 2 kg × (32 m/s) = 1.0J
  115. Web site: Candies, MARS SNACKFOOD US, SNICKERS Bar (NDB No. 19155) . USDA Nutrient Database . USDA . 14 November 2011 . dead . https://web.archive.org/web/20150303184216/http://www.nal.usda.gov/fnic/foodcomp/search/ . 3 March 2015 .
  116. Web site: How to Balance the Food You Eat and Your Physical Activity and Prevent Obesity. Healthy Weight Basics. National Heart Lung and Blood Institutde. 14 November 2011.
  117. Calculated: 2000 food calories = 2.0 cal × 4.184J/cal = 8.4J
  118. Web site: 2024-01-04 . What is Earth's Escape Velocity? - Earth How . 2024-01-04 . https://web.archive.org/web/20240104165536/https://earthhow.com/escape-velocity-earth-closed-system/ . 4 January 2024 .
  119. Calculated: 1/2 × m × v = 1/2 × 48.78 kg × (655 m/s) = 1.0J.
  120. Calculated: 2600 food calories = 2.6 cal × 4.184J/cal = 1.1J
  121. Ackerman . Spencer . Video: Navy's Mach 8 Railgun Obliterates Record . 2024-07-28 . Wired . en-US . 1059-1028.
  122. Web site: Table 3.3 Consumer Price Estimates for Energy by Source, 1970–2009. Annual Energy Review. US Energy Information Administration. 17 December 2011. 19 October 2011. $28.90 per million BTU.
  123. Calculated J per dollar: 1 million BTU/$28.90 = 1 BTU / 28.90 dollars × 1.055J/BTU = 3.65J/dollar
  124. Calculated cost per kWh: 1 kWh × 3.60J/kWh / 3.65J/dollar = 0.0986 dollar/kWh
  125. Web site: Energy in a Cubic Meter of Natural Gas. The Physics Factbook. 15 December 2011.
  126. Web site: The Olympic Diet of Michael Phelps. WebMD. 28 December 2011.
  127. Web site: Cline. James E. D.. Energy to Space. 13 November 2011. 6.27 Joules / Kg.
  128. Web site: Tour de France Winners, Podium, Times. Bike Race Info. 10 December 2011.
  129. Web site: Watts/kg. Flamme Rouge. 4 November 2011. https://web.archive.org/web/20120102133701/http://www.flammerouge.je/content/3_factsheets/constant/wattkilobench.htm. 2 January 2012. dead.
  130. Calculated: 90 hr × 3600 seconds/hr × 5 W/kg × 65 kg = 1.1J
  131. Web site: Smith. Chris. How do Thunderstorms Work?. 6 March 2007. The Naked Scientists. 15 November 2011. It discharges about 1–10 billion joules of energy.
  132. Web site: Powering up ATLAS's mega magnet. Spotlight on.... CERN. 10 December 2011. magnetic energy of 1.1 Gigajoules. https://web.archive.org/web/20111130024727/http://user.web.cern.ch/public/en/Spotlight/SpotlightATLAS-en.html. 30 November 2011. dead.
  133. Web site: ITP Metal Casting: Melting Efficiency Improvement . ITP Metal Casting. U.S. Department of Energy. 14 November 2011. 377 kWh/mt.
  134. Calculated: 380 kW-h × 3.6J/kW-h = 1.37J
  135. Web site: Lead-Free Gasoline Material Safety Data Sheet . Bell Fuels . . 6 July 2008 . dead . https://web.archive.org/web/20020820074636/http://www.sefsc.noaa.gov/HTMLdocs/Gasoline.htm . 20 August 2002 . dmy-all .
  136. http://www.thepartsbin.com/guides/volvo/fuel_tank.html thepartsbin.com – Volvo Fuel Tank: Compare at The Parts Bin
  137. EP=\sqrt{

    \hbarc5
    G
    }
  138. Web site: Power of a Human Heart. The Physics Factbook. 10 December 2011. The mechanical power of the human heart is ~1.3 watts.
  139. Calculated: 1.3J/s × 80 years × 3.16 s/year = 3.3J
  140. Web site: U.S. Household Electricity Uses: A/C, Heating, Appliances. U.S. HOUSEHOLD ELECTRICITY REPORT. EIA. 13 December 2011. For refrigerators in 2001, the average UEC was 1,239 kWh.
  141. Calculated: 1239 kWh × 3.6J/kWh = 4.5J
  142. Energy Units , by Arthur Smith, 21 January 2005
  143. Web site: Top 10 Biggest Explosions. Listverse. 10 December 2011. a yield of 11 tons of TNT. 28 November 2011.
  144. Calculated: 11 tons of TNT-equivalent × 4.184J/ton of TNT-equivalent = 4.6J
  145. Web site: Emission Facts: Average Annual Emissions and Fuel Consumption for Passenger Cars and Light Trucks . EPA. 12 December 2011. 581 gallons of gasoline.
  146. Web site: 200 Mile-Per-Gallon Cars?. 12 December 2011. a gallon of gas ... 125 million joules of energy. https://web.archive.org/web/20111219011152/http://www.uwgb.edu/dutchs/pseudosc/200mpgcar.htm. 19 December 2011. dead.
  147. Calculated: 581 gallons × 125J/gal = 7.26J
  148. Calculated: 1 watts × 86400 seconds/day = 8.6J
  149. Calculated: 3.44J/U-235-fission × 1 kg / (235 amu per U-235-fission × 1.66 amu/kg) = 8.82J
  150. Web site: 2024-01-04 . 10 striking facts about lightning - Met Office . 2024-01-04 . https://web.archive.org/web/20240104170325/https://www.metoffice.gov.uk/weather/learn-about/weather/types-of-weather/thunder-and-lightning/facts-about-lightning . 4 January 2024 .
  151. Calculated: 2000 kcal/day × 365 days/year × 80 years = 2.4J
  152. Web site: A330-300 Dimensions & key data. Airbus. 12 December 2011. 97530 litres. 16 January 2013. https://web.archive.org/web/20130116222250/http://www.airbus.com/aircraftfamilies/passengeraircraft/a330family/a330-300/specifications/. dead.
  153. Web site: Air BP Handbook of Products . dead . https://web.archive.org/web/20110608075828/http://www.bp.com/liveassets/bp_internet/aviation/air_bp/STAGING/local_assets/downloads_pdfs/a/air_bp_products_handbook_04004_1.pdf . 8 June 2011 . 19 August 2011 . BP.
  154. Calculated: 97530 liters × 0.804 kg/L × 43.15 MJ/kg = 3.38J
  155. Calculated: 1 watts × 3600 seconds/hour
  156. Web site: Weston. Kenneth. Chapter 10. Nuclear Power Plants. Energy Conversion. 13 December 2011. The thermal efficiency of a CANDU plant is only about 29%. 5 October 2011. https://web.archive.org/web/20111005120238/http://www.personal.utulsa.edu/~kenneth-weston/chapter10.pdf. dead.
  157. Web site: CANDU and Heavy Water Moderated Reactors. 12 December 2011. fuel burnup in a CANDU is only 6500 to 7500 MWd per metric ton uranium.
  158. Calculated: 7500 watt-days/tonne × (0.020 tonnes per bundle) × 86400 seconds/day = 1.3J of burnup energy. Electricity = burnup × ~29% efficiency = 3.8J
  159. Calculated: E = 1/2 m.v2 = 1/2 × 124000 kg × (7680m/s)2 = 3.66J
  160. Calculated: 4.2J/ton of TNT-equivalent × 1 tons/megaton = 4.2J/megaton of TNT-equivalent
  161. Web site: 747 Classics Technical Specs . Boeing . 12 December 2011 . 183,380 L . dead . https://web.archive.org/web/20071210173616/http://www.boeing.com/commercial/747family/pf/pf_classics.html . 10 December 2007 .
  162. Calculated: 183380 liters × 0.804 kg/L × 43.15 MJ/kg = 6.36J
  163. Web site: A380-800 Dimensions & key data. Airbus. 12 December 2011. 320,000 L. 8 July 2012. https://web.archive.org/web/20120708071501/http://www.airbus.com/aircraftfamilies/passengeraircraft/a380family/a380-800/specifications/. dead.
  164. Calculated: 320,000 L × 0.804 kg/L × 43.15  MJ/kg = 11.1J
  165. Web site: International Space Station: The ISS to Date . NASA . 23 August 2011 . 11 June 2015 . https://web.archive.org/web/20150611163133/http://www.nasa.gov/mission_pages/station/structure/isstodate.html . dead .
  166. Web site: The wizards of orbits. European Space Agency. 10 December 2011. The International Space Station, for example, flies at 7.7 km/s in one of the lowest practicable orbits.
  167. Calculated: E = 1/2 m.v2 = 1/2 × 417000 kg × (7700m/s)2 = 1.2J
  168. Web site: What was the yield of the Hiroshima bomb?. Warbird's Forum. 21 kt. 4 November 2011.
  169. Calculated: 15 kt = 15 grams of TNT-equivalent × 4.2J/gram TNT-equivalent = 6.3J
  170. Web site: Conversion from kg toJ. NIST. 4 November 2011.
  171. Web site: JPL – Fireballs and bolides. Jet Propulsion Laboratory. NASA. 13 April 2017.
  172. Web site: How much energy does a hurricane release?. FAQ : HURRICANES, TYPHOONS, AND TROPICAL CYCLONES. NOAA. 12 November 2011.
  173. Web site: The Gathering Storms. COSMOS. 10 December 2011. https://web.archive.org/web/20120404113209/http://www.cosmosmagazine.com/node/3302/full. 4 April 2012. dead.
  174. Web site: Country Comparison :: Electricity – consumption . The World Factbook . CIA . 11 December 2011 . dead . https://web.archive.org/web/20120128032332/https://www.cia.gov/library/publications/the-world-factbook/rankorder/2042rank.html . 28 January 2012 .
  175. Calculated: 288.6 kWh × 3.60J/kWh = 1.04J
  176. Calculated: 4.2J/ton of TNT-equivalent × 1 tons/megaton = 4.2J/megaton of TNT-equivalent
  177. Calculated: 3.02 kWh × 3.60J/kWh = 1.09J
  178. Web site: 2024-01-04 . Castle Bravo: The Largest U.S. Nuclear Explosion Brookings . 2024-01-04 . https://web.archive.org/web/20240104171317/https://www.brookings.edu/articles/castle-bravo-the-largest-u-s-nuclear-explosion/ . 4 January 2024 .
  179. Web site: 0.145kg*c^2*(1/sqrt(1-0.99^2)-1) - WolframAlpha . 2024-01-04 . www.wolframalpha.com . en.
  180. Calculated: E = mc = 1 kg × (2.998 m/s) = 8.99J
  181. Choy . George L. . Boatwright . John . 2007-01-01 . The Energy Radiated by the 26 December 2004 Sumatra–Andaman Earthquake Estimated from 10-Minute P -Wave Windows . Bulletin of the Seismological Society of America . en . 97 . 1A . S18–S24 . 10.1785/0120050623 . 2007BuSSA..97S..18C . 1943-3573.
  182. The Earth has a cross section of 1.274×1014 square meters and the solar constant is 1361 watts per square meter. Note, however, that because portions of Earth reflect light well, the actual energy absorbed is about 1.2*10^17 watts, from an average albedo of 0.3.
  183. Web site: The Soviet Weapons Program – The Tsar Bomba. The Nuclear Weapon Archive. 4 November 2011.
  184. Calculated: 50 tons TNT-equivalent × 4.2J/ton TNT-equivalent = 2.1J
  185. Díaz . J. S. . Rigby . S. E. . 2022-09-01 . Energetic output of the 2022 Hunga Tonga–Hunga Ha‘apai volcanic eruption from pressure measurements . Shock Waves . en . 32 . 6 . 553–561 . 10.1007/s00193-022-01092-4 . 2022ShWav..32..553D . 1432-2153. free .
  186. Calculated to be 61 megatons of TNT, equivalent to 2.552J
  187. Calculated: 115.6 kWh × 3.60J/kWh = 4.16J
  188. Book: Alexander, R. McNeill. Dynamics of Dinosaurs and Other Extinct Giants. 1989. Columbia University Press. 978-0-231-06667-9. 144. the explosion of the island volcano Krakatoa in 1883, had about 200 megatonnes energy..
  189. Calculated: 200 tons of TNT equivalent × 4.2J/ton of TNT equivalent = 8.4J
  190. This value appears to be referred only to the third explosion on 27 August, 10.02 a.m.

    According to reports, the third explosion was by far the largest; it is associated to the biggest sound in the recorded history, the highest tsunami during the eruption and the most powerful shock waves rounded the world several times. 200 Megatons of TNT are often referred as the total energy released by the entire eruption, but it's plausible that are rather the energy released by the single third explosion, considering the effects.http://www.branchcollective.org/?ps_articles=monique-morgan-the-eruption-of-krakatoa-also-known-as-krakatau-in-1883https://archive.org/details/eruptionkrakato00whipgoog/page/n12/mode/2up?view=theater

  191. Calculated: 402 kWh × 3.60J/kWh = 1.45J
  192. Yoshida . Masaki . Santosh . M. . 2020-07-01 . Energetics of the Solid Earth: An integrated perspective . Energy Geoscience . 1 . 1–2 . 28–35 . 10.1016/j.engeos.2020.04.001 . 2020EneG....1...28Y . 2666-7592. free .
  193. Web site: Mizokami. Kyle. 2019-04-01. Here's What Would Happen If We Blew Up All the World's Nukes at Once. 2021-04-08. Popular Mechanics. en-US.
  194. Calculated: 3.741 kWh × 3.600J/kWh = 1.347J
  195. Web site: United States. The World Factbook. USA. 11 December 2011.
  196. Calculated: 3.953 kWh × 3.600J/kWh = 1.423J
  197. Web site: World. The World Factbook. CIA. 11 December 2011.
  198. Calculated: 17.8 kWh × 3.60J/kWh = 6.41J
  199. Calculated: 18.95 kWh × 3.60J/kWh = 6.82J
  200. Klemetti . Erik . 2015-04-10 . Tambora 1815: Just How Big Was The Eruption? . 2024-05-25 . Wired . en-US . 1059-1028.
  201. Web site: Severe Weather: Hurricane energetics . 2024-05-24 . www.atmo.arizona.edu.
  202. Web site: Statistical Review of World Energy 2011 . BP . 9 December 2011 . dead . https://web.archive.org/web/20110902033116/http://www.bp.com/assets/bp_internet/globalbp/globalbp_uk_english/reports_and_publications/statistical_energy_review_2011/STAGING/local_assets/pdf/statistical_review_of_world_energy_full_report_2011.pdf . 2 September 2011 .
  203. Calculated: 12002.4 tonnes of oil equivalent × 42J/tonne of oil equivalent = 5.0J
  204. Web site: Global Uranium Resources to Meet Projected Demand International Atomic Energy Agency. iaea.org. 26 December 2016. June 2006.
  205. Web site: U.S. Energy Information Administration, International Energy Generation.
  206. Web site: U.S. EIA International Energy Outlook 2007. . eia.doe.gov. 26 December 2016.
  207. Final number is computed. Energy Outlook 2007 shows 15.9% of world energy is nuclear. IAEA estimates conventional uranium stock, at today's prices is sufficient for 85 years. Convert billion kilowatt-hours to joules then: 6.25×1019×0.159×85 = 8.01×1020.
  208. Calculated: "6608.9 trillion cubic feet" => 6608.9 billion cubic feet × 0.025 million tonnes of oil equivalent/billion cubic feet × 1 tonnes of oil equivalent/million tonnes of oil equivalent × 42J/tonne of oil equivalent = 6.9J
  209. Calculated: "188.8 thousand million tonnes" => 188.8 tonnes of oil × 42J/tonne of oil = 7.9J
  210. Cheng . Lijing . Foster . Grant . Hausfather . Zeke . Trenberth . Kevin E. . Abraham . John . 2022 . Improved Quantification of the Rate of Ocean Warming . Journal of Climate . 35 . 14 . 4827–4840 . 10.1175/JCLI-D-21-0895.1 . 2022JCli...35.4827C . free. Calculated per reference: 0.58W·m−2 is 9.3J·yr−1 in the global domain
  211. Matsuzawa . Toru . 2014-06-01 . The Largest Earthquakes We Should Prepare for . Journal of Disaster Research . 9 . 3 . 248–251 . 10.20965/jdr.2014.p0248. free .
  212. Calculated: 1.27 m × 1370 W/m × 86400 s/day = 1.5J
  213. Holm-Alwmark . Sanna . Rae . Auriol S. P. . Ferrière . Ludovic . Alwmark . Carl . Collins . Gareth S. . 2017-10-02 . Combining shock barometry with numerical modeling: Insights into complex crater formation—The example of the Siljan impact structure (Sweden) . Meteoritics & Planetary Science . en . 52 . 12 . 2521–2549 . 10.1111/maps.12955 . 2017M&PS...52.2521H . 1086-9379.
  214. Calculated: 860938 million tonnes of coal => 860938 tonnes of coal × (1/1.5 tonne of oil equivalent / tonne of coal) × 42J/tonne of oil equivalent = 2.4J
  215. Calculated: natural gas + petroleum + coal = 6.9J + 7.9J + 2.4J = 3.9J
  216. Fujii . Yushiro . Satake . Kenji . Watada . Shingo . Ho . Tung-Cheng . 2021-12-01 . Re-examination of Slip Distribution of the 2004 Sumatra–Andaman Earthquake (Mw 9.2) by the Inversion of Tsunami Data Using Green's Functions Corrected for Compressible Seawater Over the Elastic Earth . Pure and Applied Geophysics . en . 178 . 12 . 4777–4796 . 10.1007/s00024-021-02909-6 . 1420-9136. free .
  217. Gudmundsson . Agust . 2014-05-27 . Elastic energy release in great earthquakes and eruptions . Frontiers in Earth Science . English . 2 . 10 . 10.3389/feart.2014.00010 . free . 2014FrEaS...2...10G . 2296-6463.
  218. Richards . Mark A. . Alvarez . Walter . Self . Stephen . Karlstrom . Leif . Renne . Paul R. . Manga . Michael . Sprain . Courtney J. . Smit . Jan . Vanderkluysen . Loÿc . Gibson . Sally A. . 2015-11-01 . Triggering of the largest Deccan eruptions by the Chicxulub impact . . 127 . 11–12 . 1507–1520 . 10.1130/B31167.1 . 2015GSAB..127.1507R . 3463018 . 0016-7606.
  219. Echaurren . J. C. . 2010 . Numerical Estimations of Hydrothermal Zones, Trough Mathematical Calculations for Impact Conditions, on the Sudbury Structure, Ontario, Canada . Astrobiology Science Conference 2010 . 2010LPICo1538.5192E.
  220. Calculated: 1.27 m × 1370 W/m × 86400 s/day = 5.5J
  221. Hudson . Hugh S. . 2021-09-08 . Carrington Events . Annual Review of Astronomy and Astrophysics . en . 59 . 1 . 445–477 . 10.1146/annurev-astro-112420-023324 . 2021ARA&A..59..445H . 0066-4146.
  222. Climatic Effect of Impacts on the Ocean. 26 August 2018. 2018LPICo2065.2056Z. Zahnle. K. J.. Comparative Climatology of Terrestrial Planets III: From Stars to Surfaces. 2065. 2056.
  223. Web site: Ask Us: Sun: Amount of Energy the Earth Gets from the Sun. https://web.archive.org/web/20000816180724/http://helios.gsfc.nasa.gov/qa_sun.html#sunenergymass. dead. 16 August 2000. Cosmicopia. NASA. 4 November 2011.
  224. Web site: Lii. Jiangning. Seismic effects of the Caloris basin impact, Mercury. MIT.
  225. Okamoto . Soshi . Notsu . Yuta . Maehara . Hiroyuki . Namekata . Kosuke . Honda . Satoshi . Ikuta . Kai . Nogami . Daisaku . Shibata . Kazunari . 2021-01-11 . Statistical Properties of Superflares on Solar-type Stars: Results Using All of the Kepler Primary Mission Data . The Astrophysical Journal . en . 906 . 2 . 72 . 10.3847/1538-4357/abc8f5 . free . 2011.02117 . 2021ApJ...906...72O . 0004-637X.
  226. Web site: 0.145kg*c^2*(1/sqrt(1-0.9999999999999999999999951^2)-1) - WolframAlpha . 2024-01-04 . www.wolframalpha.com . en.
  227. Web site: Moon Fact Sheet . NASA . 16 December 2011 .
  228. Calculated: KE = 1/2 × m × v. v = 1.023 m/s. m = 7.349 kg. KE = 1/2 × (7.349 kg) × (1.023 m/s) = 3.845J.
  229. Inoue . Shun . Maehara . Hiroyuki . Notsu . Yuta . Namekata . Kosuke . Honda . Satoshi . Namizaki . Keiichi . Nogami . Daisaku . Shibata . Kazunari . 2023 . Detection of a High-velocity Prominence Eruption Leading to a CME Associated with a Superflare on the RS CVn-type Star V1355 Orionis . The Astrophysical Journal . en . 948 . 1 . 9 . 10.3847/1538-4357/acb7e8 . free . 2301.13453 . 2023ApJ...948....9I . 0004-637X.
  230. Web site: Cowing . Keith . 2023-04-28 . Superflare With Massive, High-velocity Prominence Eruption . 2024-05-26 . SpaceRef . en-US.
  231. Web site: Moment of Inertia—Earth. Eric Weisstein's World of Physics. 5 November 2011.
  232. Web site: Allain. Rhett. Rotational energy of the Earth as an energy source. .dotphysics. Science Blogs. 5 November 2011. the Earth takes 23.9345 hours to rotate. https://web.archive.org/web/20111117014824/http://scienceblogs.com/dotphysics/2009/06/rotational-energy-of-the-earth-as-an-energy-source.php. 17 November 2011. dead.
  233. Calculated: E_rotational = 1/2 × I × w = 1/2 × (8.0 kg m) × (2×pi/(23.9345 hour period × 3600 seconds/hour)) = 2.1J
  234. Web site: Dhar . Michael . 2022-11-06 . What was Earth's biggest explosion? . 2024-05-27 . livescience.com . en.
  235. 2305.18635 . Richard B. . Firestone . The origin of the terrestrial planets . 2023-05-29. astro-ph.EP .
  236. Calculated: 3.8J/s × 86400 s/day = 3.3J
  237. Web site: Typinski . Dave . January 2009 . Earth's Gravitational Binding Energy . https://web.archive.org/web/20240104173513/http://typnet.net/Essays/EarthBindGraphics/EarthBind.pdf . 4 January 2024 . 2024-01-04.
  238. Web site: 2023-12-26 . Earth Fact Sheet . 2024-01-04 . https://web.archive.org/web/20231226062838/https://nssdc.gsfc.nasa.gov/planetary/factsheet/earthfact.html . 26 December 2023 .
  239. KE = 1/2 × 5.9722×10^24 kg × (30.29 km/s)^2 = 2.74×10^33 J
  240. Calculated: 3.8J/s × 86400 s/day × 365.25 days/year = 1.2J
  241. 2405.01210 . Bradley E. . Schaefer . Recurrent Nova V2487 Oph Had Superflares in 1941 and 1942 With Radiant Energies 1042.5±1.6 Ergs . 2024-05-02. astro-ph.SR .
  242. Web site: NASA - Cosmic Explosion Among the Brightest in Recorded History . 2022-03-27 . www.nasa.gov . en.
  243. Palmer . D. M. . Barthelmy . S. . Gehrels . N. . Kippen . R. M. . Cayton . T. . Kouveliotou . C. . Eichler . D. . Wijers . R. a. M. J. . Woods . P. M. . Granot . J. . Lyubarsky . Y. E. . April 2005 . A giant γ-ray flare from the magnetar SGR 1806–20 . Nature . en . 434 . 7037 . 1107–1109 . 10.1038/nature03525 . 15858567 . astro-ph/0503030 . 2005Natur.434.1107P . 16579885 . 1476-4687.
  244. Stella . L. . Dall'Osso . S. . Israel . G. L. . Vecchio . A. . 2005-11-17 . Gravitational Radiation from Newborn Magnetars in the Virgo Cluster . The Astrophysical Journal . en . 634 . 2 . L165–L168 . 10.1086/498685 . astro-ph/0511068 . 2005ApJ...634L.165S . 18172538 . 0004-637X.
  245. U=

    (3/5)GM2
    r
    Chandrasekhar, S. 1939, An Introduction to the Study of Stellar Structure (Chicago: U. of Chicago; reprinted in New York: Dover), section 9, eqs. 90–92, p. 51 (Dover edition)Lang, K. R. 1980, Astrophysical Formulae (Berlin: Springer Verlag), p. 272
  246. Web site: Earth: Facts & Figures . https://archive.today/20120723114418/http://solarsystem.nasa.gov/planets/profile.cfm?Object=Earth&Display=Facts . dead . 23 July 2012 . Solar System Exploration . NASA . 29 September 2011 .
  247. Web site: Conversion from kg to J. NIST. 4 November 2011.
  248. Frail . D. A. . Kulkarni . S. R. . Sari . R. . Djorgovski . S. G. . Bloom . J. S. . Galama . T. J. . Reichart . D. E. . Berger . E. . Harrison . F. A. . Price . P. A. . Yost . S. A. . Diercks . A. . Goodrich . R. W. . Chaffee . F. . Beaming in Gamma-Ray Bursts: Evidence for a Standard Energy Reservoir . 10.1086/338119 . The Astrophysical Journal . 562 . 1 . L55 . 2001 . astro-ph/0102282 . 2001ApJ...562L..55F . 1047372 . "the gamma-ray energy release, corrected for geometry, is narrowly clustered around 5 × 10 erg"
  249. Calculated: 5 erg × 1J/erg = 5J
  250. Lyutikov . Maxim . 2022 . On the nature of fast blue optical transients . Monthly Notices of the Royal Astronomical Society . 515 . 2 . 2293–2304 . 10.1093/mnras/stac1717 . free . Oxford Academic. 2204.08366 .
  251. Lu . Wenbin . Kumar . Pawan . 2018-09-28 . On the Missing Energy Puzzle of Tidal Disruption Events . The Astrophysical Journal . 865 . 2 . 128 . 10.3847/1538-4357/aad54a . 1802.02151 . 2018ApJ...865..128L . 56015417 . 1538-4357 . free .
  252. Coppejans . D. L. . Margutti . R. . Terreran . G. . Nayana . A. J. . Coughlin . E. R. . Laskar . T. . Alexander . K. D. . Bietenholz . M. . Caprioli . D. . Chandra . P. . Drout . M. R. . 2020-05-26 . A Mildly Relativistic Outflow from the Energetic, Fast-rising Blue Optical Transient CSS161010 in a Dwarf Galaxy . The Astrophysical Journal . en . 895 . 1 . L23 . 10.3847/2041-8213/ab8cc7 . 2003.10503 . 2020ApJ...895L..23C . 214623364 . 2041-8213 . free .
  253. Li . Miao . Li . Yuan . Bryan . Greg L. . Ostriker . Eve C. . Quataert . Eliot . 2020-05-05 . The Impact of Type Ia Supernovae in Quiescent Galaxies. I. Formation of the Multiphase Interstellar Medium . The Astrophysical Journal . en . 894 . 1 . 44 . 10.3847/1538-4357/ab86b4 . free . 1909.03138 . 2020ApJ...894...44L . 0004-637X.
  254. Frail . D. A. . Kulkarni . S. R. . Sari . R. . Djorgovski . S. G. . Bloom . J. S. . Galama . T. J. . Reichart . D. E. . Berger . E. . Harrison . F. A. . Price . P. A. . Yost . S. A. . Diercks . A. . Goodrich . R. W. . Chaffee . F. . 2001-11-01 . Beaming in Gamma-Ray Bursts: Evidence for a Standard Energy Reservoir . The Astrophysical Journal . en . 562 . 1 . L55 . 10.1086/338119 . astro-ph/0102282 . 2001ApJ...562L..55F . 0004-637X.
  255. Nakamura . Takayoshi . Umeda . Hideyuki . Iwamoto . Koichi . Nomoto . Ken’ichi . Hashimoto . Masa-aki . Hix . W. Raphael . Thielemann . Friedrich-Karl . 2001-07-10 . Explosive Nucleosynthesis in Hypernovae . The Astrophysical Journal . 555 . 2 . 880–899 . 10.1086/321495 . astro-ph/0011184 . 2001ApJ...555..880N . 0004-637X.
  256. Nicholl . Matt . Blanchard . Peter K. . Berger . Edo . Chornock . Ryan . Margutti . Raffaella . Gomez . Sebastian . Lunnan . Ragnhild . Miller . Adam A. . Fong . Wen-fai . Terreran . Giacomo . Vigna-Gómez . Alejandro . September 2020 . An extremely energetic supernova from a very massive star in a dense medium . Nature Astronomy . en . 4 . 9 . 893–899 . 10.1038/s41550-020-1066-7 . 2004.05840 . 2020NatAs...4..893N . 215744925 . 2397-3366.
  257. Suzuki . Akihiro . Nicholl . Matt . Moriya . Takashi J. . Takiwaki . Tomoya . 2021-02-01 . Extremely Energetic Supernova Explosions Embedded in a Massive Circumstellar Medium: The Case of SN 2016aps . The Astrophysical Journal . 908 . 1 . 99 . 10.3847/1538-4357/abd6ce . free . 2012.13283 . 2021ApJ...908...99S . 0004-637X.
  258. Godoy-Rivera . D. . Stanek . K. Z. . Kochanek . C. S. . Chen . Ping . Dong . Subo . Prieto . J. L. . Shappee . B. J. . Jha . S. W. . Foley . R. J. . Pan . Y.-C. . Holoien . T. W.-S. . Thompson . Todd. A. . Grupe . D. . Beacom . J. F. . 2017-04-01 . The unexpected, long-lasting, UV rebrightening of the superluminous supernova ASASSN-15lh . Monthly Notices of the Royal Astronomical Society . en . 466 . 2 . 1428–1443 . 10.1093/mnras/stw3237 . free . 0035-8711. 1605.00645 .
  259. Kankare . E. . Kotak . R. . Mattila . S. . Lundqvist . P. . Ward . M. J. . Fraser . M. . Lawrence . A. . Smartt . S. J. . Meikle . W. P. S. . Bruce . A. . Harmanen . J. . December 2017 . A population of highly energetic transient events in the centres of active galaxies . Nature Astronomy . en . 1 . 12 . 865–871 . 10.1038/s41550-017-0290-2 . 1711.04577 . 2017NatAs...1..865K . 119421626 . 2397-3366.
  260. Both ASSASN-15lh and PS1-10adi are indicated as supernovae and probably they are; actually, other mechanisms are proposed to explain them, more or less in accordance to the characteristics of supernovae
  261. Yong . D. . Kobayashi . C. . Da Costa . G. S. . Bessell . M. S. . Chiti . A. . Frebel . A. . Lind . K.. Karin Lind . Mackey . A. D. . Nordlander . T. . Asplund . M. . Casey . A. R. . 2021-07-08 . R-Process elements from magnetorotational hypernovae . Nature . 595 . 7866 . 223–226 . 10.1038/s41586-021-03611-2 . 34234332 . 2107.03010 . 2021Natur.595..223Y . 235755170 . 0028-0836.
  262. 1003.3885. McBreen. S. Optical and near-infrared follow-up observations of four Fermi/LAT GRBs: Redshifts, afterglows, energetics and host galaxies. Astronomy and Astrophysics. 516. 71. A71. Krühler. T. Rau. A. Greiner. J. Kann. D. A. Savaglio. S. Afonso. P. Clemens. C. Filgas. R. Klose. S. Küpüc Yoldas. A. Olivares E. F. Rossi. A. Szokoly. G. P. Updike. A. Yoldas. A. 2010. 10.1051/0004-6361/200913734. 2010A&A...516A..71M. 119151764.
  263. 1004.2900. Cenko. S. B. Afterglow Observations of Fermi-LAT Gamma-Ray Bursts and the Emerging Class of Hyper-Energetic Events. The Astrophysical Journal. 732. 1. 29. Frail. D. A. Harrison. F. A. Haislip. J. B. Reichart. D. E. Butler. N. R. Cobb. B. E. Cucchiara. A. Berger. E. Bloom. J. S. Chandra. P. Fox. D. B. Perley. D. A. Prochaska. J. X. Filippenko. A. V. Glazebrook. K. Ivarsen. K. M. Kasliwal. M. M. Kulkarni. S. R. LaCluyze. A. P. Lopez. S. Morgan. A. N. Pettini. M. Rana. V. R. 2010. 10.1088/0004-637X/732/1/29. 2011ApJ...732...29C. 50964480.
  264. 0905.0690. Cenko. S. B. The Collimation and Energetics of the Brightest Swift Gamma-Ray Bursts. The Astrophysical Journal. 711. 2. 641–654. Frail. D. A. Harrison. F. A. Kulkarni. S. R. Nakar. E. Chandra. P. Butler. N. R. Fox. D. B. Gal-Yam. A. Kasliwal. M. M. Kelemen. J. Moon. D. -S. Price. P. A. Rau. A. Soderberg. A. M. Alicia M. Soderberg. Teplitz. H. I. Werner. M. W. Bock. D. C. -J. Bloom. J. S. Starr. D. A. Filippenko. A. V. Chevalier. R. A. Gehrels. N. Nousek. J. N. Piran. T. Piran. T. 2010. 10.1088/0004-637X/711/2/641. 2010ApJ...711..641C. 32188849.
  265. Web site: Frail . Dale A. . GRB ENERGETICS. Then and Now . https://web.archive.org/web/20140801172839/http://tsvi.phys.huji.ac.il/presentations/Frail_AstroExtreme.pdf . 1 August 2014 . tsvi.phys.huji.ac.il.
  266. Web site: Frail . Dale A. . Multi-wavelength afterglow observations . https://web.archive.org/web/20231024160333/http://fermi.gsfc.nasa.gov/science/mtgs/grb2010/tue/Dale_Frail.ppt . 24 October 2023 . PPT . fermi.gsfc.nasa.gov . PPT.
  267. Quark-Nova Astronomy & Astrophysics (A&A). Astronomy & Astrophysics . August 2002 . 390 . 3 . L39–L42 . 10.1051/0004-6361:20020982 . Ouyed . R. . Dey . J. . Dey . M. .
  268. Kasen . Daniel . Woosley . S. E. . Heger . Alexander . 2011 . Pair Instability Supernovae: Light Curves, Spectra, and Shock Breakout . The Astrophysical Journal . 734 . 2 . 102 . 1101.3336 . 2011ApJ...734..102K . 10.1088/0004-637X/734/2/102 . 118508934.
  269. Sukhbold . Tuguldur . Woosley . S. E. . 2016-03-30 . The Most Luminous Supernovae . The Astrophysical Journal Letters . 820 . 2 . L38 . 10.3847/2041-8205/820/2/l38 . free . 1602.04865 . 2016ApJ...820L..38S . 2041-8205.
  270. Wiseman . p. . Wang . Y. . Hönig . S. . Castero-Segura . N. . Clark . P. . Frohmaier . C. . Fulton . M. D. . Leloudas . G. . Middleton . M. . Müller-Bravo . T. E. . Mummery . A. . Pursiainen . M . Smartt . S. J. . Smith . K. . Sullivan . M. . July 2023 . Multiwavelength observations of the extraordinary accretion event AT 2021lwx . . 522 . 3 . 3992–4002 . 10.1093/mnras/stad1000 . free . 2303.04412 .
  271. Ruffini . R. . Salmonson . J. D. . Wilson . J. R. . Xue . S. -S. . 1999-10-01 . On the pair electromagnetic pulse of a black hole with electromagnetic structure . Astronomy and Astrophysics . 350 . 334–343 . astro-ph/9907030 . 1999A&A...350..334R . 0004-6361.
  272. Ruffini . R. . Salmonson . J. D. . Wilson . J. R. . Xue . S. -S. . 2000-07-01 . On the pair-electromagnetic pulse from an electromagnetic black hole surrounded by a baryonic remnant . Astronomy and Astrophysics . 359 . 855–864 . astro-ph/0004257 . 2000A&A...359..855R . 0004-6361.
  273. De Colle . Fabio . Lu . Wenbin . September 2020 . Jets from Tidal Disruption Events . New Astronomy Reviews . 89 . 101538 . 10.1016/j.newar.2020.101538. 1911.01442 . 2020NewAR..8901538D . 207870076 .
  274. Tamburini . Fabrizio . De Laurentis . Mariafelicia . Amati . Lorenzo . Thidé . Bo . 2017-11-06 . General relativistic electromagnetic and massive vector field effects with gamma-ray burst production . Physical Review D . 96 . 10 . 104003 . 10.1103/PhysRevD.96.104003. 1603.01464 . 2017PhRvD..96j4003T .
  275. Misra . Kuntal . Ghosh . Ankur . Resmi . L. . 2023 . The Detection of Very High Energy Photons in Gamma Ray Bursts . Physics News . . 53 . 42–45.
  276. Frederiks . D. . Svinkin . D. . Lysenko . A. L. . Molkov . S. . Tsvetkova . A. . Ulanov . M. . Ridnaia . A. . Lutovinov . A. A. . Lapshov . I. . Tkachenko . A. . Levin . V. . 2023-05-01 . Properties of the Extremely Energetic GRB 221009A from Konus-WIND and SRG/ART-XC Observations . The Astrophysical Journal Letters . 949 . 1 . L7 . 10.3847/2041-8213/acd1eb . 2041-8205. free . 2302.13383 . 2023ApJ...949L...7F .
  277. Web site: Sun Fact Sheet . NASA . 15 October 2011 .
  278. Web site: Conversion from kg to J. NIST. 4 November 2011.
  279. Abbott . B. . Abbott . R. . 1 . Observation of Gravitational Waves from a Binary Black Hole Merger . Physical Review Letters . 10.1103/PhysRevLett.116.061102 . 116 . 6 . 2016. 1602.03837 . 2016PhRvL.116f1102A . 26918975 . 061102. 124959784 .
  280. If GW190521 is a boson star merging, the present one remains the largest. See note [246][247]
  281. It is important to specify that the energetic reduction for beaming (invoked to explain so much energetics and jet breaks) is expected in the "Fireball model", which is the traditional one; other main models explain both Long and Short GRBs with binary systems, such as "Induced Gravitational Collapse", "Binary-Driven Hypernovae" which refer to the "Fireshell" one, in which cases the beaming isn't assumpted and the isotropic energy is a real value of energy due to the rotational energy of the stellar black hole and vacuum polarization in a electromagnetic field, which are able to explain energetics up and over 1047 J
  282. Tajima . Hiroyasu . 2009 . Fermi Observations of high-energy gamma-ray emissions from GRB 080916C . astro-ph.HE . 0907.0714 .
  283. Whalen. Daniel J.. Johnson. Jarrett L.. Smidt. Joseph. Meiksin. Avery. Heger. Alexander. Even. Wesley. Fryer. Chris L.. The Supernova That Destroyed a Protogalaxy: Prompt Chemical Enrichment and Supermassive Black Hole Growth. August 2013. The Astrophysical Journal. en. 774. 1. 64. 10.1088/0004-637X/774/1/64. 0004-637X. 1305.6966. 2013ApJ...774...64W. 59289675.
  284. Chen. Ke-Jung. Heger. Alexander. Woosley. Stan. Almgren. Ann. Whalen. Daniel J.. Johnson. Jarrett L.. The General Relativistic Instability Supernova of a Supermassive Population III Star. July 2014. The Astrophysical Journal. en. 790. 2. 162. 10.1088/0004-637X/790/2/162. 0004-637X. 1402.4777. 2014ApJ...790..162C. 119269181.
  285. Assuming the uncertainties about the masses of the objects, the values of the LIGO Data are taken in consideration; so we have a newborn black hole with about 142 solar masses and the conversion in gravitational waves of about 7 solar masses
  286. Abbott . R. . Abbott . T. D. . Abraham . S. . Acernese . F. . Ackley . K. . Adams . C. . Adhikari . R. X. . Adya . V. B. . Affeldt . C. . Agathos . M. . Agatsuma . K. . 2020-09-02 . Properties and Astrophysical Implications of the 150 M ⊙ Binary Black Hole Merger GW190521 . The Astrophysical Journal . en . 900 . 1 . L13 . 10.3847/2041-8213/aba493 . 2009.01190 . 2020ApJ...900L..13A . 221447444 . 2041-8213 . free .
  287. LIGO Scientific Collaboration and Virgo Collaboration . Abbott . R. . Abbott . T. D. . Abraham . S. . Acernese . F. . Ackley . K. . Adams . C. . Adhikari . R. X. . Adya . V. B. . Affeldt . C. . Agathos . M. . 2020-09-02 . GW190521: A Binary Black Hole Merger with a Total Mass of 150 M . Physical Review Letters . 125 . 10 . 101102 . 10.1103/PhysRevLett.125.101102. 32955328 . 221447506 . free . 2009.01075 . 2020PhRvL.125j1102A .
  288. A research claims that this is instead a boson stars merging with approximately 8 times more probability than the black hole case; if so, the existence and the collision of boson stars there would be confirmed together. Furthermore, the energy released and the distance would be reduced.https://spaceaustralia.com/index.php/feature/black-holes-or-boson-stars-mystery-gw190521

    See the following note for the link of the research

  289. Bustillo . Juan Calderón . Sanchis-Gual . Nicolas . Torres-Forné . Alejandro . Font . José A. . Vajpeyi . Avi . Smith . Rory . Herdeiro . Carlos . Radu . Eugen . Leong . Samson H. W. . 2021-02-24 . GW190521 as a Merger of Proca Stars: A Potential New Vector Boson of . Physical Review Letters . 126 . 8 . 081101 . 10.1103/PhysRevLett.126.081101. 33709746 . 2009.05376 . 10773/31565 . 231719224 . free .
  290. Aimuratov . Y. . Becerra . L. M. . Bianco . C. L. . Cherubini . C. . Valle . M. Della . Filippi . S. . Li 李 . Liang 亮 . Moradi . R. . Rastegarnia . F. . Rueda . J. A. . Ruffini . R. . Sahakyan . N. . Wang 王 . Y. 瑜 . Zhang 张 . S. R. 书瑞 . 2023-09-22 . GRB-SN Association within the Binary-driven Hypernova Model . The Astrophysical Journal . 955 . 2 . 93 . 10.3847/1538-4357/ace721 . free . 2303.16902 . 2023ApJ...955...93A . 0004-637X.
  291. Burns . Eric . Svinkin . Dmitry . Fenimore . Edward . Kann . D. Alexander . Agüí Fernández . José Feliciano . Frederiks . Dmitry . Hamburg . Rachel . Lesage . Stephen . Temiraev . Yuri . Tsvetkova . Anastasia . Bissaldi . Elisabetta . Briggs . Michael S. . Dalessi . Sarah . Dunwoody . Rachel . Fletcher . Cori . 2023-03-01 . GRB 221009A: The BOAT . The Astrophysical Journal Letters . 946 . 1 . L31 . 10.3847/2041-8213/acc39c . 2041-8205. free . 2302.14037 . 2023ApJ...946L..31B .
  292. Abbasi . R. . Ackermann . M. . Adams . J. . Agarwalla . S. K. . Aguilar . J. A. . Ahlers . M. . Alameddine . J. M. . Amin . N. M. . Andeen . K. . Anton . G. . Argüelles . C. . Ashida . Y. . Athanasiadou . S. . Ausborm . L. . Axani . S. N. . 2024 . Search for 10–1000 GeV Neutrinos from Gamma-Ray Bursts with IceCube . The Astrophysical Journal . en . 964 . 2 . 126 . 10.3847/1538-4357/ad220b . free . 2312.11515 . 2024ApJ...964..126A . 0004-637X.
  293. Zhang 张 . B. Theodore 兵 . Murase . Kohta . Ioka . Kunihito . Song . Deheng . Yuan 袁 . Chengchao 成超 . Mészáros . Péter . 2023-04-01 . External Inverse-compton and Proton Synchrotron Emission from the Reverse Shock as the Origin of VHE Gamma Rays from the Hyper-bright GRB 221009A . The Astrophysical Journal Letters . 947 . 1 . L14 . 10.3847/2041-8213/acc79f . free . 2211.05754 . 2023ApJ...947L..14Z . 2041-8205.
  294. Toma. Kenji. Sakamoto. Takanori. Mészáros. Peter. Population III Gamma-Ray Burst Afterglows: Constraints on Stellar Masses and External Medium Densities. April 2011. The Astrophysical Journal. en. 731. 2. 127. 10.1088/0004-637X/731/2/127. 0004-637X. 1008.1269. 2011ApJ...731..127T. 119288325.
  295. Web site: Garner . Rob . 2020-03-18 . Quasar Tsunamis Rip Across Galaxies . 2022-03-28 . NASA.
  296. To determinate this value, the maximum energy of 1047 J for gamma-ray burts is taken in consideration; then six orders of magnitude are added, equivalent to ten million of years, the time frame in which the quasar tsunami will exceed the GRBs energetics over 1 million of times, according to the Nahum Arav's statement in the previous note
  297. 1103.0630. Cavagnolo. K. W. A Powerful AGN Outburst in RBS 797. The Astrophysical Journal. 732. 2. 71. McNamara. B. R. Wise. M. W. Nulsen. P. E. J. Brüggen. M. Gitti. M. Rafferty. D. A. 2011. 10.1088/0004-637X/732/2/71. 2011ApJ...732...71C. 73653317.
  298. The Powerful Outburst in Hercules A . 10.1086/430945 . 2005 . Nulsen . P. E. J. . Hambrick . D. C. . McNamara . B. R. . Rafferty . D. . Birzan . L. . Wise . M. W. . David . L. P. . The Astrophysical Journal . 625 . 1 . L9–L12 . astro-ph/0504350 . 2005ApJ...625L...9N .
  299. Li. Shuang-Liang. Cao. Xinwu. June 2012. Constraints on Jet Formation Mechanisms with the Most Energetic Giant Outbursts in MS 0735+7421. The Astrophysical Journal. en. 753. 1. 24. 10.1088/0004-637X/753/1/24. 0004-637X. 1204.2327. 2012ApJ...753...24L . 119236058.
  300. Giacintucci. S.. Markevitch. M.. Johnston-Hollitt. M.. Wik. D. R.. Wang. Q. H. S.. Clarke. T. E.. February 2020. Discovery of a Giant Radio Fossil in the Ophiuchus Galaxy Cluster. The Astrophysical Journal. en. 891. 1. 1. 10.3847/1538-4357/ab6a9d. 0004-637X. 2002.01291. 2020ApJ...891....1G. 211020555 . free .
  301. Web site: Siegel . Ethan . Merging Supermassive Black Holes Will Become The Most Energetic Events Of All . 2022-03-21 . Forbes . en.
  302. Web site: Siegel . Ethan . 2020-03-10 . Merging Supermassive Black Holes Are The Universe's Most Energetic Events Of All . 2022-03-21 . Starts With A Bang! . en.
  303. Web site: Diodati . Michele . 2020-04-11 . Rotating Black Holes, the Most Powerful Energy Generators in the Universe . 2022-03-28 . Amazing Science . en.
  304. Tamburini . Fabrizio . Thidé . Bo . Della Valle . Massimo . 2020 . Measurement of the spin of the M87 black hole from its observed twisted light . Monthly Notices of the Royal Astronomical Society: Letters . 492 . L22–L27 . en . 10.1093/mnrasl/slz176 . free . 0035-8711. 1904.07923 . 2020MNRAS.492L..22T .
  305. Tucker. W.. Blanco. P.. Rappoport. S.. David. L.. Fabricant. D.. Falco. E. E.. Forman. W.. Dressler. A.. Ramella. M.. 1998-03-02. 1E 0657–56: A Contender for the Hottest Known Cluster of Galaxies. The Astrophysical Journal. en. 496. 1. L5. 10.1086/311234. 0004-637X. astro-ph/9801120. 1998ApJ...496L...5T. 16140198.
  306. Markevitch . Maxim . Vikhlinin . Alexey . May 2007 . Shocks and cold fronts in galaxy clusters . Physics Reports . 443 . 1 . 1–53 . 10.1016/j.physrep.2007.01.001. astro-ph/0701821 . 2007PhR...443....1M . 119326224 .
  307. Web site: The Milky Way Galaxy . Jim Brau . 4 November 2011 . James E. Brau .
  308. Web site: Conversion from kg to J. NIST. 4 November 2011.
  309. Karachentsev . I. D. . Kashibadze . O. G. . 2006 . Masses of the local group and of the M81 group estimated from distortions in the local velocity field . Astrophysics . 49 . 1. 3–18 . 10.1007/s10511-006-0002-6 . 2006Ap.....49....3K. 120973010 .
  310. Web site: Conversion from kg to J. NIST. 4 November 2011.
  311. Einasto, M. . The richest superclusters. I. Morphology . Astronomy and Astrophysics . December 2007 . 476 . 2 . 697–711 . 2007A&A...476..697E . 10.1051/0004-6361:20078037 . 1 . Saar . E. . Liivamägi . L. J. . Einasto . J. . Tago . E. . Martínez . V. J. . Starck . J.-L. . Müller . V. . Heinämäki . P. . 0706.1122 . 15004251.
  312. Web site: Big Bang Energy . dead . https://web.archive.org/web/20140819120709/http://imagine.gsfc.nasa.gov/docs/ask_astro/answers/980211b.html . 19 August 2014 . 26 December 2016.