Order-6 hexagonal tiling honeycomb explained

bgcolor=#e7dcc3 colspan=2Order-6 hexagonal tiling honeycomb

Perspective projection view
from center of Poincaré disk model
TypeHyperbolic regular honeycomb
Paracompact uniform honeycomb
Schläfli symbol
Coxeter diagram

Cells
Faces
Edge figure
Vertex figure or
DualSelf-dual
Coxeter group

\overline{Z}3

, [6,3,6]

\overline{VP}3

, [6,3<sup>[3]]
PropertiesRegular, quasiregular
In the field of hyperbolic geometry, the order-6 hexagonal tiling honeycomb is one of 11 regular paracompact honeycombs in 3-dimensional hyperbolic space. It is paracompact because it has cells with an infinite number of faces. Each cell is a hexagonal tiling whose vertices lie on a horosphere: a flat plane in hyperbolic space that approaches a single ideal point at infinity.

The Schläfli symbol of the hexagonal tiling honeycomb is . Since that of the hexagonal tiling of the plane is, this honeycomb has six such hexagonal tilings meeting at each edge. Since the Schläfli symbol of the triangular tiling is, the vertex figure of this honeycomb is a triangular tiling. Thus, infinitely many hexagonal tilings meet at each vertex of this honeycomb.[1]

Related tilings

The order-6 hexagonal tiling honeycomb is analogous to the 2D hyperbolic infinite-order apeirogonal tiling,, with infinite apeirogonal faces, and with all vertices on the ideal surface.

It contains and that tile 2-hypercycle surfaces, which are similar to the paracompact tilings and (the truncated infinite-order triangular tiling and order-3 apeirogonal tiling, respectively):

Symmetry

The order-6 hexagonal tiling honeycomb has a half-symmetry construction: .

It also has an index-6 subgroup, [6,3<sup>*</sup>,6], with a non-simplex fundamental domain. This subgroup corresponds to a Coxeter diagram with six order-3 branches and three infinite-order branches in the shape of a triangular prism: .

Related polytopes and honeycombs

The order-6 hexagonal tiling honeycomb is a regular hyperbolic honeycomb in 3-space, and one of eleven paracompact honeycombs in 3-space.

There are nine uniform honeycombs in the [6,3,6] Coxeter group family, including this regular form.

This honeycomb has a related alternated honeycomb, the triangular tiling honeycomb, but with a lower symmetry: ↔ .

The order-6 hexagonal tiling honeycomb is part of a sequence of regular polychora and honeycombs with triangular tiling vertex figures:

It is also part of a sequence of regular polychora and honeycombs with hexagonal tiling cells:

It is also part of a sequence of regular polychora and honeycombs with regular deltahedral vertex figures:

Rectified order-6 hexagonal tiling honeycomb

bgcolor=#e7dcc3 colspan=2Rectified order-6 hexagonal tiling honeycomb
TypeParacompact uniform honeycomb
Schläfli symbolsr or t1
Coxeter diagrams


↔ ↔
Cells
Faces
Vertex figure
hexagonal prism
Coxeter groups

\overline{Z}3

, [6,3,6]

\overline{VP}3

, [6,3<sup>[3]]

\overline{PP}3

, [3<sup>[3,3]]
PropertiesVertex-transitive, edge-transitive
The rectified order-6 hexagonal tiling honeycomb, t1, has triangular tiling and trihexagonal tiling facets, with a hexagonal prism vertex figure.

it can also be seen as a quarter order-6 hexagonal tiling honeycomb, q, ↔ .

It is analogous to 2D hyperbolic order-4 apeirogonal tiling, r with infinite apeirogonal faces, and with all vertices on the ideal surface.

Related honeycombs

The order-6 hexagonal tiling honeycomb is part of a series of honeycombs with hexagonal prism vertex figures:

It is also part of a matrix of 3-dimensional quarter honeycombs: q

Truncated order-6 hexagonal tiling honeycomb

bgcolor=#e7dcc3 colspan=2Truncated order-6 hexagonal tiling honeycomb
TypeParacompact uniform honeycomb
Schläfli symbolt or t0,1
Coxeter diagram
Cells
Faces
Vertex figure
hexagonal pyramid
Coxeter groups

\overline{Z}3

, [6,3,6]

\overline{VP}3

, [6,3<sup>[3]]
PropertiesVertex-transitive
The truncated order-6 hexagonal tiling honeycomb, t0,1, has triangular tiling and truncated hexagonal tiling facets, with a hexagonal pyramid vertex figure.[2]

Bitruncated order-6 hexagonal tiling honeycomb

bgcolor=#e7dcc3 colspan=2Bitruncated order-6 hexagonal tiling honeycomb
TypeParacompact uniform honeycomb
Schläfli symbolbt or t1,2
Coxeter diagram

Cells
Faces
Vertex figure
tetrahedron
Coxeter groups

2 x \overline{Z}3

, [[6,3,6]]

\overline{VP}3

, [6,3<sup>[3]]

\overline{V}3

, [3,3,6]
PropertiesRegular

The bitruncated order-6 hexagonal tiling honeycomb is a lower symmetry construction of the regular hexagonal tiling honeycomb, ↔ . It contains hexagonal tiling facets, with a tetrahedron vertex figure.

Cantellated order-6 hexagonal tiling honeycomb

bgcolor=#e7dcc3 colspan=2Cantellated order-6 hexagonal tiling honeycomb
TypeParacompact uniform honeycomb
Schläfli symbolrr or t0,2
Coxeter diagram
Cells
Faces
Vertex figure
wedge
Coxeter groups

\overline{Z}3

, [6,3,6]

\overline{VP}3

, [6,3<sup>[3]]
PropertiesVertex-transitive
The cantellated order-6 hexagonal tiling honeycomb, t0,2, has trihexagonal tiling, rhombitrihexagonal tiling, and hexagonal prism cells, with a wedge vertex figure.

Cantitruncated order-6 hexagonal tiling honeycomb

bgcolor=#e7dcc3 colspan=2Cantitruncated order-6 hexagonal tiling honeycomb
TypeParacompact uniform honeycomb
Schläfli symboltr or t0,1,2
Coxeter diagram
Cells
Faces
Vertex figure
mirrored sphenoid
Coxeter groups

\overline{Z}3

, [6,3,6]

\overline{VP}3

, [6,3<sup>[3]]
PropertiesVertex-transitive
The cantitruncated order-6 hexagonal tiling honeycomb, t0,1,2, has hexagonal tiling, truncated trihexagonal tiling, and hexagonal prism cells, with a mirrored sphenoid vertex figure.

Runcinated order-6 hexagonal tiling honeycomb

bgcolor=#e7dcc3 colspan=2Runcinated order-6 hexagonal tiling honeycomb
TypeParacompact uniform honeycomb
Schläfli symbolt0,3
Coxeter diagram
Cells
Faces
Vertex figure
triangular antiprism
Coxeter groups

2 x \overline{Z}3

, [[6,3,6]]
PropertiesVertex-transitive, edge-transitive
The runcinated order-6 hexagonal tiling honeycomb, t0,3, has hexagonal tiling and hexagonal prism cells, with a triangular antiprism vertex figure.

It is analogous to the 2D hyperbolic rhombihexahexagonal tiling, rr, with square and hexagonal faces:

Runcitruncated order-6 hexagonal tiling honeycomb

bgcolor=#e7dcc3 colspan=2Runcitruncated order-6 hexagonal tiling honeycomb
TypeParacompact uniform honeycomb
Schläfli symbolt0,1,3
Coxeter diagram
Cells
Faces
Vertex figure
isosceles-trapezoidal pyramid
Coxeter groups

\overline{Z}3

, [6,3,6]
PropertiesVertex-transitive
The runcitruncated order-6 hexagonal tiling honeycomb, t0,1,3, has truncated hexagonal tiling, rhombitrihexagonal tiling, hexagonal prism, and dodecagonal prism cells, with an isosceles-trapezoidal pyramid vertex figure.

Omnitruncated order-6 hexagonal tiling honeycomb

bgcolor=#e7dcc3 colspan=2Omnitruncated order-6 hexagonal tiling honeycomb
TypeParacompact uniform honeycomb
Schläfli symbolt0,1,2,3
Coxeter diagram
Cells
Faces
Vertex figure
phyllic disphenoid
Coxeter groups

2 x \overline{Z}3

, [[6,3,6]]
PropertiesVertex-transitive
The omnitruncated order-6 hexagonal tiling honeycomb, t0,1,2,3, has truncated trihexagonal tiling and dodecagonal prism cells, with a phyllic disphenoid vertex figure.

Alternated order-6 hexagonal tiling honeycomb

bgcolor=#e7dcc3 colspan=2Alternated order-6 hexagonal tiling honeycomb
TypeParacompact uniform honeycomb
Schläfli symbolsh
Coxeter diagrams
Cells
Faces
Vertex figure
hexagonal tiling
Coxeter groups

\overline{VP}3

, [6,3<sup>[3]]
PropertiesRegular, quasiregular

The alternated order-6 hexagonal tiling honeycomb is a lower-symmetry construction of the regular triangular tiling honeycomb, ↔ . It contains triangular tiling facets in a hexagonal tiling vertex figure.

Cantic order-6 hexagonal tiling honeycomb

bgcolor=#e7dcc3 colspan=2Cantic order-6 hexagonal tiling honeycomb
TypeParacompact uniform honeycomb
Schläfli symbolsh2
Coxeter diagrams
Cells
Faces
Vertex figure
triangular prism
Coxeter groups

\overline{VP}3

, [6,3<sup>[3]]
PropertiesVertex-transitive, edge-transitive

The cantic order-6 hexagonal tiling honeycomb is a lower-symmetry construction of the rectified triangular tiling honeycomb, ↔, with trihexagonal tiling and hexagonal tiling facets in a triangular prism vertex figure.

Runcic order-6 hexagonal tiling honeycomb

bgcolor=#e7dcc3 colspan=2Runcic order-6 hexagonal tiling honeycomb
TypeParacompact uniform honeycomb
Schläfli symbolsh3
Coxeter diagrams
Cells
Faces
Vertex figure
triangular cupola
Coxeter groups

\overline{VP}3

, [6,3<sup>[3]]
PropertiesVertex-transitive
The runcic hexagonal tiling honeycomb, h3,, or, has hexagonal tiling, rhombitrihexagonal tiling, triangular tiling, and triangular prism facets, with a triangular cupola vertex figure.

Runicantic order-6 hexagonal tiling honeycomb

bgcolor=#e7dcc3 colspan=2Runcicantic order-6 hexagonal tiling honeycomb
TypeParacompact uniform honeycomb
Schläfli symbolsh2,3
Coxeter diagrams
Cells
Faces
Vertex figure
rectangular pyramid
Coxeter groups

\overline{VP}3

, [6,3<sup>[3]]
PropertiesVertex-transitive
The runcicantic order-6 hexagonal tiling honeycomb, h2,3,, or, contains truncated trihexagonal tiling, truncated hexagonal tiling, trihexagonal tiling, and triangular prism facets, with a rectangular pyramid vertex figure.

See also

References

  1. Coxeter The Beauty of Geometry, 1999, Chapter 10, Table III
  2. https://twitter.com/roice713/status/1111121384875483136 Twitter