In general relativity, optical scalars refer to a set of three scalar functions
\{\hat\theta
\hat\sigma
\hat\omega
\}
In fact, these three scalars
\{\hat\theta,\hat\sigma,\hat\omega\}
\{\hat\theta\hathab,\hat\sigmaab,\hat\omegaab\}
\{\hat\theta,\hat\sigma,\hat\omega\}
Denote the tangent vector field of an observer's worldline (in a timelike congruence) as
Za
(1) hab=gab+ZaZb , hab=gab+ZaZb ,
a | |
h | |
b |
a | |
=\delta | |
b |
+ZaZb ,
where
a | |
h | |
b |
a | |
h | |
b |
\nablabZa
Bab
(2) Bab
c | |
=h | |
a |
d | |
h | |
b |
\nabladZc=\nablabZa+AaZb ,
where
Aa
Bab
Bab
a=B | |
Z | |
ab |
Zb=0
(3) Aa=0 , ⇒ Bab=\nablabZa .
Now decompose
Bab
\thetaab
\omegaab
(4) \thetaab=B(ab) , \omegaab=B[ab] .
\omegaab=B[ab]
gab\omegaab=0
\thetaab
gab\thetaab=\theta
\thetaab
(5) \thetaab=
1 | |
3 |
\thetahab+\sigmaab .
Hence, all in all we have
(6) Bab=
1 | |
3 |
\thetahab+\sigmaab+\omegaab , \theta=gab\thetaab=gabB(ab) , \sigmaab=\thetaab-
1 | |
3 |
\thetahab , \omegaab=B[ab] .
Now, consider a geodesic null congruence with tangent vector field
ka
(7) \hat{B}ab:=\nablabka ,
which can be decomposed into
(8) \hatBab=\hat\thetaab+\hat\omegaab=
1 | |
2 |
\hat\theta\hathab+\hat\sigmaab+\hat\omegaab ,
where
(9) \hat\thetaab=\hatB(ab) , \hat\theta=\hathab\hatBab , \hat\sigmaab=\hatB(ab)-
1 | |
2 |
\hat\theta\hathab , \hat\omegaab=\hatB[ab] .
Here, "hatted" quantities are utilized to stress that these quantities for null congruences are two-dimensional as opposed to the three-dimensional timelike case. However, if we only discuss null congruences in a paper, the hats can be omitted for simplicity.
The optical scalars
\{\hat\theta,\hat\sigma,\hat\omega\}
\{\hat\theta,\hat\sigmaab,\hat\omegaab\}
The expansion of a geodesic null congruence is defined by (where for clearance we will adopt another standard symbol "
;
\nablaa
(10) \hat\theta=
1 | |
2 |
a{} | |
k | |
;a |
.
Comparison with the "expansion rates of a null congruence": As shown in the article "Expansion rate of a null congruence", the outgoing and ingoing expansion rates, denoted by
\theta(\ell)
\theta(n)
(A.1) \theta(\ell):=hab\nablaalb ,
(A.2) \theta(n):=hab\nablaanb ,
where
hab=gab+lanb+nalb
\theta(\ell)
\theta(n)
(A.3) \theta(\ell)=gab\nablaalb-\kappa(\ell) ,
(A.4) \theta(n)=gab\nablaanb-\kappa(n) ,
where
\kappa(\ell)
\kappa(n)
(A.5)
a\nabla | |
l | |
a |
lb=\kappa(\ell)lb ,
(A.6)
a\nabla | |
n | |
a |
nb=\kappa(n)nb .
Moreover, in the language of Newman–Penrose formalism with the convention
\{(-,+,+,+);la
a | |
n | |
a=-1,m |
\bar{m}a=1\}
(A.7) \theta(l)=-(\rho+\bar\rho)=-2Re(\rho), \theta(n)=\mu+\bar\mu=2Re(\mu),
As we can see, for a geodesic null congruence, the optical scalar
\theta
\theta(\ell)
\theta(n)
\theta
\theta(\ell)
\theta(n)
The shear of a geodesic null congruence is defined by
(11) {\hat\sigma}
2=\hat\sigma | |
ab |
\hat{\bar\sigma}ab=
1 | |
2 |
gcagdbk(a;b)kc;d-(
1 | |
2 |
a{} | |
k | |
;a |
)2=gcagdb
1 | |
2 |
k(a;b)kc;d-{\hat\theta}2 .
The twist of a geodesic null congruence is defined by
(12) {\hat\omega}2=
1 | |
2 |
k[a;b]ka;b=gcagdbk[a;b]kc;d .
In practice, a geodesic null congruence is usually defined by either its outgoing (
ka=la
ka=na
\{\hat\theta(\ell),\hat\sigma(\ell),\hat\omega(\ell)\}
\{\hat\theta(n),\hat\sigma(n),\hat\omega(n)\}
la
na
The propagation (or evolution) of
Bab
Zc
(13)
c\nabla | |
Z | |
c |
Bab
c | |
=-B | |
b |
Bac+RcbadZcZd .
Take the trace of Eq(13) by contracting it with
gab
(14)
c\nabla | |
Z | |
c |
\theta=\theta,\tau=-
1 | |
3 |
\theta2-\sigmaab\sigmaab+\omegaab\omegaab-RabZaZb
in terms of the quantities in Eq(6). Moreover, the trace-free, symmetric part of Eq(13) is
(15)
c\nabla | |
Z | |
c |
\sigmaab=-
2 | |
3 |
\theta\sigmaab-\sigmaac
c | |
\sigma | |
b |
-\omegaac
c | ||
\omega | + | |
b |
1 | |
3 |
hab(\sigmacd\sigmacd-\omegacd\omegacd)+CcbadZc
| ||||
Z |
\tilde{R}ab.
Finally, the antisymmetric component of Eq(13) yields
(16)
c\nabla | |
Z | |
c |
\omegaab=-
2 | |
3 |
\theta\omegaab
c | |
-2\sigma | |
[b |
\omegaa]c .
A (generic) geodesic null congruence obeys the following propagation equation,
(16)
c\nabla | |
k | |
c |
\hatBab=-\hat
c | |
B | |
b |
\hatBac+\widehat{Rcbadkckd} .
With the definitions summarized in Eq(9), Eq(14) could be rewritten into the following componential equations,
(17)
c\nabla | |
k | |
c |
\hat\theta=\hat\theta,λ=-
1 | |
2 |
\hat\theta2-\hat\sigmaab\hat\sigmaab+\hat\omegaab\hat\omegaab-\widehat{Rcdkckd} ,
(18)
c\nabla | |
k | |
c |
\hat\sigmaab=-\hat\theta\hat\sigmaab+\widehat{Ccbadkckd} ,
(19)
c\nabla | |
k | |
c |
\hat\omegaab=-\hat\theta\hat\omegaab .
For a geodesic null congruence restricted on a null hypersurface, we have
(20)
c\nabla | |
k | |
c |
\theta=\hat\theta,λ=-
1 | |
2 |
\hat\theta2-\hat\sigmaab\hat\sigmaab-\widehat{Rcdkc
d}+\kappa | |
k | |
(\ell) |
\hat\theta ,
(21)
c\nabla | |
k | |
c |
\hat\sigmaab=-\hat\theta\hat\sigmaab+\widehat{Ccbadkc
d}+\kappa | |
k | |
(\ell) |
\hat\sigmaab ,
(22)
c\nabla | |
k | |
c |
\hat\omegaab=0 .
For a better understanding of the previous section, we will briefly review the meanings of relevant NP spin coefficients in depicting null congruences.[1] The tensor form of Raychaudhuri's equation[6] governing null flows reads
(23) l{L}\ell\theta(\ell)=-
1 | |
2 |
2+\tilde{\kappa} | |
\theta | |
(\ell) |
\theta(\ell)-\sigmaab\sigmaab+\tilde{\omega}ab\tilde{\omega}ab-Rablalb,
where
\tilde{\kappa}(\ell)
\tilde{\kappa}(\ell)lb:=la\nablaalb
(24) \theta(\ell)=-(\rho+\bar\rho)=-2Re(\rho), \theta(n)=\mu+\bar\mu=2Re(\mu),
(25) \sigmaab=-\sigma\barma\barmb-\bar\sigmamamb,
(26) \tilde{\omega}ab=
1 | |
2 |
(\rho-\bar\rho)(ma\barmb-\barmamb)=Im(\rho) ⋅ (ma\barmb-\barmamb),
where Eq(24) follows directly from
\hat{h}ab=\hat{h}ba=mb\barma+\barmbma
(27) \theta(\ell)=\hat{h}ba\nablaa
b\bar | |
l | |
b=m |
a\nabla | |
m | |
a |
lb+\barmb
a\nabla | |
m | |
a |
lb=mb\bar\deltalb+\barmb\deltalb=-(\rho+\bar\rho),
(28) \theta(n)=\hat{h}ba\nablaanb=\barmb
a\nabla | |
m | |
a |
b\bar | |
n | |
b+m |
a\nabla | |
m | |
a |
nb=\barmb\delta
b\bar | |
n | |
b+m |
\deltanb=\mu+\bar\mu.