Ophthalmic acid explained
Ophthalmic acid (OPH), also known as ophthalmate (chemically L-γ-glutamyl-L-α-aminobutyrylglycine), is a tripeptide analog of glutathione. However, instead of the cysteine essential for many of glutathione's diverse functions, it contains L-2-aminobutyrate, a non-proteinogenic amino acid lacking the nucleophilic thiol group. Because of this, it has been widely, and incorrectly, considered an accidental byproduct of glutathione synthesis.
In 2024, an article published by the federation of European biochemistry societies compiled evidence to put forward the major hypothesis that OPH serves as a glutathione regulating tripeptide, affecting both cellular and organelle influx and efflux of GSH, as well as modulating GSH-dependent reactions and signaling.[1]
Biosynthesis
OPH is created using the precursor 2-aminobutyric acid through consecutive reactions of the same enzymes that create GSH, namely Glutamate–cysteine ligase and glutathione synthetase.
Major regulators of OPH biosynthesis are local (relative) concentrations of cysteine and 2-aminobutyric acid, as well as their γ-glutamyl intermediate products.
Discovery and occurrence
OPH was first discovered and isolated from calf lens[2] in 1956, and has since been found to be a ubiquitous metabolite. It is produced by:
Distribution within (higher) organisms also appears to be ubiquitous as it has been found in the:
In plants, it is found in:
- Seed flour
- Leaves
- Fruit pulp
- Beans
Ophthalmic acid is not a biomarker of oxidative stress
OPH has mostly appeared in metabolomics studies correlating changes in its abundance with oxidative stress, following a study from 2006 on acetaminophen overdose in mice. However, this practice should generally be avoided, as there are major issues:
- Though some studies indeed find this correlation,[34] the consistent correlation between ophthalmic acid increases and glutathione depletion does not exist. Compared to a healthy baseline, both can go up, both can go down,[35] [36] or ophthalmic acid can go up with no changes in glutathione.[37] A study on circadian rhythm tracking both glutathione and ophthalmic acid levels determined that ophthalmic acid levels were rhythmic, while glutathione levels were not.[38] Ophthalmic acid trends also differ wildly between different tissues in the same animal at the same timepoint,[39] [40] again dispelling the notion of a broader and consistent correlation.
- The meaning of "biomarker" is much more narrow in this context than many studies assume. Importantly, the Soga et al. study sees a correlation between depleting hepatic glutathione levels, and rising ophthalmic acid levels in plasma, in mice. It solves the practical problem of not being able to directly measure an established glutathione depletion in liver by measuring ophthalmic acid in plasma. However, subsequent studies often measure both glutathione and ophthalmic acid, and when glutathione shows no aberration, ophthalmic acid is used as a “marker” to still claim oxidative stress. There cannot be an appeal to a correlation when the data itself disproves that very correlation.
- Ophthalmic acid can be found in high concentrations in healthy tissues. For instance in the eye. It is not solely found in stressed or diseased states.
- The original goal of using ophthalmic acid plasma levels to assess liver damage after acetaminophen overdose has not proven effective in several follow-up studies.[41] [39]
See also
Notes and References
- Schomakers . Bauke V. . Jillings . Sonia L. . van Weeghel . Michel . Vaz . Frédéric M. . Salomons . Gajja S. . Janssens . Georges E. . Houtkooper . Riekelt H. . 2024-01-20 . Ophthalmic acid is a glutathione regulating tripeptide . The FEBS Journal . en . 10.1111/febs.17061 . 1742-464X. free .
- Waley SG; Biochem. J. 64, 715 (1956)
- Narainsamy . Kinsley . Farci . Sandrine . Braun . Emilie . Junot . Christophe . Cassier‐Chauvat . Corinne . Chauvat . Franck . 2016-02-09 . Oxidative‐stress detoxification and signalling in cyanobacteria: the crucial glutathione synthesis pathway supports the production of ergothioneine and ophthalmate . Molecular Microbiology . 100 . 1 . 15–24 . 10.1111/mmi.13296 . 0950-382X . free.
- Ito . Tomokazu . Yamauchi . Ayako . Hemmi . Hisashi . Yoshimura . Tohru . December 2016 . Ophthalmic acid accumulation in an Escherichia coli mutant lacking the conserved pyridoxal 5′-phosphate-binding protein YggS . Journal of Bioscience and Bioengineering . 122 . 6 . 689–693 . 10.1016/j.jbiosc.2016.06.010 . 1389-1723.
- Web site: Fountain . Jake C. . Yang . Liming . Pandey . Manish K. . Bajaj . Prasad . Alexander . Danny . Chen . Sixue . Kemerait . Robert C. . Varshney . Rajeev K. . Guo . Baozhu . 2019-01-03 . Carbohydrate, glutathione, and polyamine metabolism are central to Aspergillus flavus oxidative stress responses over time . 2023-11-18 . 10.1101/511170.
- Servillo . Luigi . Castaldo . Domenico . Giovane . Alfonso . Casale . Rosario . D'Onofrio . Nunzia . Cautela . Domenico . Balestrieri . Maria Luisa . April 2018 . Ophthalmic acid is a marker of oxidative stress in plants as in animals . Biochimica et Biophysica Acta (BBA) - General Subjects . 1862 . 4 . 991–998 . 10.1016/j.bbagen.2018.01.015 . 0304-4165.
- Pinsorn . Pinnapat . Oikawa . Akira . Watanabe . Mutsumi . Sasaki . Ryosuke . Ngamchuachit . Panita . Hoefgen . Rainer . Saito . Kazuki . Sirikantaramas . Supaart . December 2018 . Metabolic variation in the pulps of two durian cultivars: Unraveling the metabolites that contribute to the flavor . Food Chemistry . 268 . 118–125 . 10.1016/j.foodchem.2018.06.066 . 0308-8146.
- Baxter . Bridget . Oppel . Renee . Ryan . Elizabeth . 2018-12-22 . Navy Beans Impact the Stool Metabolome and Metabolic Pathways for Colon Health in Cancer Survivors . Nutrients . 11 . 1 . 28 . 10.3390/nu11010028 . 2072-6643 . 6356708 . free.
- Schomakers . Bauke V. . Hermans . Jill . Jaspers . Yorrick R.J. . Salomons . Gajja . Vaz . Frédéric M. . van Weeghel . Michel . Houtkooper . Riekelt H. . June 2022 . Polar metabolomics in human muscle biopsies using a liquid-liquid extraction and full-scan LC-MS . STAR Protocols . 3 . 2 . 101302 . 10.1016/j.xpro.2022.101302 . 2666-1667 . 9035783 . free.
- Ryabova . Alina . Cornette . Richard . Cherkasov . Alexander . Watanabe . Masahiko . Okuda . Takashi . Shagimardanova . Elena . Kikawada . Takahiro . Gusev . Oleg . 2020-07-28 . Combined metabolome and transcriptome analysis reveals key components of complete desiccation tolerance in an anhydrobiotic insect . Proceedings of the National Academy of Sciences . 117 . 32 . 19209–19220 . 10.1073/pnas.2003650117 . 0027-8424 . 7431039 . free.
- Remø . Sofie Charlotte . Hevrøy . Ernst Morten . Breck . Olav . Olsvik . Pål Asgeir . Waagbø . Rune . 2017-04-18 . Lens metabolomic profiling as a tool to understand cataractogenesis in Atlantic salmon and rainbow trout reared at optimum and high temperature . PLOS ONE . 12 . 4 . e0175491 . 10.1371/journal.pone.0175491 . 1932-6203 . 5395160 . free.
- Abasht . Behnam . Mutryn . Marie F. . Michalek . Ryan D. . Lee . William R. . 2016-04-20 . Oxidative Stress and Metabolic Perturbations in Wooden Breast Disorder in Chickens . PLOS ONE . 11 . 4 . e0153750 . 10.1371/journal.pone.0153750 . 1932-6203 . 4838225 . free.
- Orlowski . M . Wilk . S . 1978-02-15 . Synthesis of ophthalmic acid in liver and kidney in vivo . Biochemical Journal . 170 . 2 . 415–419 . 10.1042/bj1700415 . 0306-3283 . 1183909 . 637852.
- Andres Ibarra . Rafael . Abbas . R. . Kombu . R. S. . Zhang . Guo-Fang . Jacobs . G. . Lee . Z. . Brunengraber . H. . Sanabria . J. R. . 2011-09-18 . Disturbances in the Glutathione/Ophthalmate Redox Buffer System in the Woodchuck Model of Hepatitis Virus-Induced Hepatocellular Carcinoma . HPB Surgery . 2011 . 1–9 . 10.1155/2011/789323 . 0894-8569 . 3175733 . free.
- Tsuboi . Seiji . Hirota . Kazuhiro . Ogata . Kazumi . Ohmori . Shinji . February 1984 . Ophthalmic and norophthalmic acid in lens, liver, and brain of higher animals . Analytical Biochemistry . 136 . 2 . 520–524 . 10.1016/0003-2697(84)90255-0 . 0003-2697.
- Maekawa . Keiko . Hirayama . Akiyoshi . Iwata . Yuko . Tajima . Yoko . Nishimaki-Mogami . Tomoko . Sugawara . Shoko . Ueno . Noriko . Abe . Hiroshi . Ishikawa . Masaki . Murayama . Mayumi . Matsuzawa . Yumiko . Nakanishi . Hiroki . Ikeda . Kazutaka . Arita . Makoto . Taguchi . Ryo . June 2013 . Global metabolomic analysis of heart tissue in a hamster model for dilated cardiomyopathy . Journal of Molecular and Cellular Cardiology . 59 . 76–85 . 10.1016/j.yjmcc.2013.02.008 . 0022-2828.
- Sethna . Shirley S. . Gander . John E. . Rathbun . William B. . January 1984 . Glutathione synthetase of bovine lens: Anomalies of the enzyme-catalyzed formation of ophthalmic acid . Current Eye Research . 3 . 7 . 923–928 . 10.3109/02713688409167209 . 0271-3683.
- Waley . S. G. . 1958-01-01 . Acidic peptides of the lens. 3. The structure of ophthalmic acid . Biochemical Journal . 68 . 1 . 189–192 . 10.1042/bj0680189 . 0306-3283 . 1200251 . 13522597.
- Schønheyder . F. . Ehlers . N. . Hust . B. . September 1975 . Remarks on the Aqueous Humor/Plasma Ratios for Amino Acids and Related Compounds in Patients With Various Chronic Ocular Disorders . Acta Ophthalmologica . 53 . 4 . 627–634 . 10.1111/j.1755-3768.1975.tb01781.x . 1755-375X.
- Kombu . Rajan S. . Zhang . Guo-Fang . Abbas . Rime . Mieyal . John J. . Anderson . Vernon E. . Kelleher . Joanne K. . Sanabria . Juan R. . Brunengraber . Henri . July 2009 . Dynamics of glutathione and ophthalmate traced with2H-enriched body water in rats and humans . American Journal of Physiology. Endocrinology and Metabolism . 297 . 1 . E260–E269 . 10.1152/ajpendo.00080.2009 . 0193-1849 . 2711657 . 19401458.
- Janssens . Georges E. . Grevendonk . Lotte . Perez . Ruben Zapata . Schomakers . Bauke V. . de Vogel-van den Bosch . Johan . Geurts . Jan M. W. . van Weeghel . Michel . Schrauwen . Patrick . Houtkooper . Riekelt H. . Hoeks . Joris . 2022-02-17 . Healthy aging and muscle function are positively associated with NAD+ abundance in humans . Nature Aging . 2 . 3 . 254–263 . 10.1038/s43587-022-00174-3 . 2662-8465.
- Web site: Garcia-Tsao . Guadalupe . Fortune . Brett . 2013-01-30 . Faculty of 1000 evaluation for Systematic review of ophthalmate as a novel biomarker of hepatic glutathione depletion. . 10.3410/f.717969185.793470080 . free.
- 2017 . Ophthalmic acid as a read-out for hepatic glutathione metabolism in humans . Journal of Clinical and Translational Research . 10.18053/jctres.03.2017s2.006 . 2424-810X . 6412618 . free.
- Kondoh . Hiroshi . Kameda . Masahiro . Yanagida . Mitsuhiro . 2020-12-26 . Whole Blood Metabolomics in Aging Research . International Journal of Molecular Sciences . 22 . 1 . 175 . 10.3390/ijms22010175 . 1422-0067 . 7796096 . free.
- Priolo . Carmen . Khabibullin . Damir . Reznik . Ed . Filippakis . Harilaos . Ogórek . Barbara . Kavanagh . Taylor R. . Nijmeh . Julie . Herbert . Zachary T. . Asara . John M. . Kwiatkowski . David J. . Wu . Chin-Lee . Henske . Elizabeth P. . 2018-06-11 . Impairment of gamma-glutamyl transferase 1 activity in the metabolic pathogenesis of chromophobe renal cell carcinoma . Proceedings of the National Academy of Sciences . 115 . 27 . 10.1073/pnas.1710849115 . 0027-8424 . 6142242 . free.
- Fong . Miranda Y. . McDunn . Jonathan . Kakar . Sham S. . 2011-05-19 . Identification of Metabolites in the Normal Ovary and Their Transformation in Primary and Metastatic Ovarian Cancer . PLOS ONE . 6 . 5 . e19963 . 10.1371/journal.pone.0019963 . 1932-6203 . 3098284 . free.
- Web site: Admin . Ada . Pipino . Caterina . Shah . Hetal . Prudente . Sabrina . Pietro . Natalia Di . Zeng . Lixia . Park . Kyoungmin . Trischitta . Vincenzo . Pennathur . Subramanian . 2020-07-10 . Association of the 1q25 diabetes-specific coronary heart disease locus with alterations of the γ-glutamyl cycle and increased methylglyoxal levels in endothelial cells . 2023-11-18 . 10.2337/figshare.12616442.
- Kameda . Masahiro . Teruya . Takayuki . Yanagida . Mitsuhiro . Kondoh . Hiroshi . 2020-04-15 . Frailty markers comprise blood metabolites involved in antioxidation, cognition, and mobility . Proceedings of the National Academy of Sciences . 117 . 17 . 9483–9489 . 10.1073/pnas.1920795117 . 0027-8424 . 7196897 . free.
- Chaleckis . Romanas . Murakami . Itsuo . Takada . Junko . Kondoh . Hiroshi . Yanagida . Mitsuhiro . 2016-03-28 . Individual variability in human blood metabolites identifies age-related differences . Proceedings of the National Academy of Sciences . 113 . 16 . 4252–4259 . 10.1073/pnas.1603023113 . 0027-8424 . 4843419 . free.
- Masood . Afshan . Jacob . Minnie . Gu . Xinyun . Abdel Jabar . Mai . Benabdelkamel . Hicham . Nizami . Imran . Li . Liang . Dasouki . Majed . Abdel Rahman . Anas M. . January 2021 . Distinctive metabolic profiles between Cystic Fibrosis mutational subclasses and lung function . Metabolomics . 17 . 1 . 10.1007/s11306-020-01760-5 . 1573-3882.
- Feuer . Sky K. . Donjacour . Annemarie . Simbulan . Rhodel K. . Lin . Wingka . Liu . Xiaowei . Maltepe . Emin . Rinaudo . Paolo F. . 2014-11-01 . Sexually Dimorphic Effect of In Vitro Fertilization (IVF) on Adult Mouse Fat and Liver Metabolomes . Endocrinology . 155 . 11 . 4554–4567 . 10.1210/en.2014-1465 . 0013-7227 . 4197990 . free.
- Offord . R E . Philippe . J . Davis . J G . Halban . P A . Berger . M . 1979-07-15 . Inhibition of degradation of insulin by ophthalamic acid and by a bovine pancreatic proteinase inhibitor . Biochemical Journal . 182 . 1 . 249–251 . 10.1042/bj1820249 . 0264-6021 . 1161257 . 315228.
- Soga . Tomoyoshi . Baran . Richard . Suematsu . Makoto . Ueno . Yuki . Ikeda . Satsuki . Sakurakawa . Tadayuki . Kakazu . Yuji . Ishikawa . Takamasa . Robert . Martin . Nishioka . Takaaki . Tomita . Masaru . June 2006 . Differential Metabolomics Reveals Ophthalmic Acid as an Oxidative Stress Biomarker Indicating Hepatic Glutathione Consumption . Journal of Biological Chemistry . 281 . 24 . 16768–16776 . 10.1074/jbc.m601876200 . 0021-9258 . free.
- Carretero . Aitor . León . Zacarías . García-Cañaveras . Juan Carlos . Zaragoza . Ángela . Gómez-Lechón . María José . Donato . María Teresa . Lahoz . Agustín . 2014-06-27 . In vitro/in vivo screening of oxidative homeostasis and damage to DNA, protein, and lipids using UPLC/MS-MS . Analytical and Bioanalytical Chemistry . 406 . 22 . 5465–5476 . 10.1007/s00216-014-7983-5 . 1618-2642.
- Brunelli . Laura . Caiola . Elisa . Marabese . Mirko . Broggini . Massimo . Pastorelli . Roberta . 2014-05-12 . Capturing the metabolomic diversity of KRAS mutants in non-small-cell lung cancer cells . Oncotarget . 5 . 13 . 4722–4731 . 10.18632/oncotarget.1958 . 1949-2553. free . 4148094 .
- Mehta . Hemal H. . Xiao . Jialin . Ramirez . Ricardo . Miller . Brendan . Kim . Su-Jeong . Cohen . Pinchas . Yen . Kelvin . June 2019 . Metabolomic profile of diet-induced obesity mice in response to humanin and small humanin-like peptide 2 treatment . Metabolomics . 15 . 6 . 10.1007/s11306-019-1549-7 . 1573-3882. free . 6554247 .
- Lee . Jaeyong . Kang . Eun Sil . Kobayashi . Sho . Homma . Takujiro . Sato . Hideyo . Seo . Han Geuk . Fujii . Junichi . December 2017 . The viability of primary hepatocytes is maintained under a low cysteine-glutathione redox state with a marked elevation in ophthalmic acid production . Experimental Cell Research . 361 . 1 . 178–191 . 10.1016/j.yexcr.2017.10.017 . 0014-4827.
- Goede . Paul . Wüst . Rob C. I. . Schomakers . Bauke V. . Denis . Simone . Vaz . Frédéric M. . Pras‐Raves . Mia L. . Weeghel . Michel . Yi . Chun‐Xia . Kalsbeek . Andries . Houtkooper . Riekelt H. . 2022-01-15 . Time‐restricted feeding during the inactive phase abolishes the daily rhythm in mitochondrial respiration in rat skeletal muscle . The FASEB Journal . 36 . 2 . 10.1096/fj.202100707r . 0892-6638. free . 20.500.11755/74eab261-4c7d-4293-b7fb-8389b96134d7 . free .
- 2017 . Ophthalmic acid as a read-out for hepatic glutathione metabolism in humans . Journal of Clinical and Translational Research . 10.18053/jctres.03.2017s2.006 . 2424-810X. free . 6412618 .
- Ghosh . Sujoy . Forney . Laura A. . Wanders . Desiree . Stone . Kirsten P. . Gettys . Thomas W. . 2017-05-16 . An integrative analysis of tissue-specific transcriptomic and metabolomic responses to short-term dietary methionine restriction in mice . PLOS ONE . 12 . 5 . e0177513 . 10.1371/journal.pone.0177513 . 1932-6203. free . 5433721 .
- Kaur . Gurnit . Leslie . Elaine M. . Tillman . Holly . Lee . William M. . Swanlund . Diane P. . Karvellas . Constantine J. . 2015-09-25 . Detection of Ophthalmic Acid in Serum from Acetaminophen-Induced Acute Liver Failure Patients Is More Frequent in Non-Survivors . PLOS ONE . 10 . 9 . e0139299 . 10.1371/journal.pone.0139299 . 1932-6203. free . 4583290 .