The obstacle problem is a classic motivating example in the mathematical study of variational inequalities and free boundary problems. The problem is to find the equilibrium position of an elastic membrane whose boundary is held fixed, and which is constrained to lie above a given obstacle. It is deeply related to the study of minimal surfaces and the capacity of a set in potential theory as well. Applications include the study of fluid filtration in porous media, constrained heating, elasto-plasticity, optimal control, and financial mathematics.[1]
The mathematical formulation of the problem is to seek minimizers of the Dirichlet energy functional,
in some domains
D
u
u
\phi(x)
In general, the solution is continuous and possesses Lipschitz continuous first derivatives, but that the solution is generally discontinuous in the second derivatives across the free boundary. The free boundary is characterized as a Hölder continuous surface except at certain singular points, which reside on a smooth manifold.
The obstacle problem arises when one considers the shape taken by a soap film in a domain whose boundary position is fixed (see Plateau's problem), with the added constraint that the membrane is constrained to lie above some obstacle
\phi(x)
This problem can be linearized in the case of small perturbations by expanding the energy functional in terms of its Taylor series and taking the first term only, in which case the energy to be minimized is the standard Dirichlet energy
The obstacle problem also arises in control theory, specifically the question of finding the optimal stopping time for a stochastic process with payoff function
\phi(x)
In the simple case wherein the process is Brownian motion, and the process is forced to stop upon exiting the domain, the solution
u(x)
x
Suppose the following data is given:
D\inRn
f(x)
\partialD
D
\varphi(x)
D
\varphi|\partial<f
\varphi(x)
D
f
Then consider the set
which is a closed convex subset of the Sobolev space of square integrable functions with square integrable weak first derivatives, containing precisely those functions with the desired boundary conditions which are also above the obstacle. The solution to the obstacle problem is the function which minimizes the energy integral
over all functions
u(x)
K
See also: Variational inequality. The obstacle problem can be reformulated as a standard problem in the theory of variational inequalities on Hilbert spaces. Seeking the energy minimizer in the set
K
where
\langle ⋅ , ⋅ \rangle:Rn x Rn\toR
Rn
u
K
for coercive, real-valued, bounded bilinear forms
a(u,v)
f(v)
See also: Superharmonic function and Viscosity solution. A variational argument shows that, away from the contact set, the solution to the obstacle problem is harmonic. A similar argument which restricts itself to variations that are positive shows that the solution is superharmonic on the contact set. Together, the two arguments imply that the solution is a superharmonic function.[1]
In fact, an application of the maximum principle then shows that the solution to the obstacle problem is the least superharmonic function in the set of admissible functions.[5]
The solution to the obstacle problem has
C1,1
\phi(x)
\sigma(r)
|\phi(x)-\phi(y)|\leq\sigma(|x-y|)
u(x)
C\sigma(2r)
\sigma(r)
Cr\sigma(2r)
Subject to a degeneracy condition, level sets of the difference between the solution and the obstacle,
\{x:u(x)-\phi(x)=t\}
t>0
C1,\alpha
C1,\alpha
C1
The theory of the obstacle problem is extended to other divergence form uniformly elliptic operators,[5] and their associated energy functionals. It can be generalized to degenerate elliptic operators as well.
The double obstacle problem, where the function is constrained to lie above one obstacle function and below another, is also of interest.
The Signorini problem is a variant of the obstacle problem, where the energy functional is minimized subject to a constraint which only lives on a surface of one lesser dimension, which includes the boundary obstacle problem, where the constraint operates on the boundary of the domain.
The parabolic, time-dependent cases of the obstacle problem and its variants are also objects of study.