In mathematics, and specifically in number theory, a divisor function is an arithmetic function related to the divisors of an integer. When referred to as the divisor function, it counts the number of divisors of an integer (including 1 and the number itself). It appears in a number of remarkable identities, including relationships on the Riemann zeta function and the Eisenstein series of modular forms. Divisor functions were studied by Ramanujan, who gave a number of important congruences and identities; these are treated separately in the article Ramanujan's sum.
A related function is the divisor summatory function, which, as the name implies, is a sum over the divisor function.
The sum of positive divisors function σz(n), for a real or complex number z, is defined as the sum of the zth powers of the positive divisors of n. It can be expressed in sigma notation as
\sigmaz(n)=\sumd\middz,
where
{d\midn}
The aliquot sum s(n) of n is the sum of the proper divisors (that is, the divisors excluding n itself,), and equals σ1(n) - n; the aliquot sequence of n is formed by repeatedly applying the aliquot sum function.
For example, σ0(12) is the number of the divisors of 12:
\begin{align} \sigma0(12)&=10+20+30+40+60+120\\ &=1+1+1+1+1+1=6, \end{align}
while σ1(12) is the sum of all the divisors:
\begin{align} \sigma1(12)&=11+21+31+41+61+121\\ &=1+2+3+4+6+12=28, \end{align}
and the aliquot sum s(12) of proper divisors is:
\begin{align} s(12)&=11+21+31+41+61\\ &=1+2+3+4+6=16. \end{align}
σ-1(n) is sometimes called the abundancy index of n, and we have:
\begin{align} \sigma-1(12)&=1-1+2-1+3-1+4-1+6-1+12-1\\ &=\tfrac11+\tfrac12+\tfrac13+\tfrac14+\tfrac16+\tfrac1{12}\\ &=\tfrac{12}{12}+\tfrac6{12}+\tfrac4{12}+\tfrac3{12}+\tfrac2{12}+\tfrac1{12}\\ &=\tfrac{12+6+4+3+2+1}{12}=\tfrac{28}{12}=\tfrac73=\tfrac{\sigma1(12)}{12} \end{align}
The cases x = 2 to 5 are listed in through, x = 6 to 24 are listed in through .
n | factorization | 0(n) | 1(n) | 2(n) | 3(n) | 4(n) | ||
---|---|---|---|---|---|---|---|---|
1 | style='text-align:center;' | 1 | 1 | 1 | 1 | 1 | 1 | |
2 | style='text-align:center;' | 2 | 2 | 3 | 5 | 9 | 17 | |
3 | style='text-align:center;' | 3 | 2 | 4 | 10 | 28 | 82 | |
4 | style='text-align:center;' | 22 | 3 | 7 | 21 | 73 | 273 | |
5 | style='text-align:center;' | 5 | 2 | 6 | 26 | 126 | 626 | |
6 | style='text-align:center;' | 2×3 | 4 | 12 | 50 | 252 | 1394 | |
7 | style='text-align:center;' | 7 | 2 | 8 | 50 | 344 | 2402 | |
8 | style='text-align:center;' | 23 | 4 | 15 | 85 | 585 | 4369 | |
9 | style='text-align:center;' | 32 | 3 | 13 | 91 | 757 | 6643 | |
10 | style='text-align:center;' | 2×5 | 4 | 18 | 130 | 1134 | 10642 | |
11 | style='text-align:center;' | 11 | 2 | 12 | 122 | 1332 | 14642 | |
12 | style='text-align:center;' | 22×3 | 6 | 28 | 210 | 2044 | 22386 | |
13 | style='text-align:center;' | 13 | 2 | 14 | 170 | 2198 | 28562 | |
14 | style='text-align:center;' | 2×7 | 4 | 24 | 250 | 3096 | 40834 | |
15 | style='text-align:center;' | 3×5 | 4 | 24 | 260 | 3528 | 51332 | |
16 | style='text-align:center;' | 24 | 5 | 31 | 341 | 4681 | 69905 | |
17 | style='text-align:center;' | 17 | 2 | 18 | 290 | 4914 | 83522 | |
18 | style='text-align:center;' | 2×32 | 6 | 39 | 455 | 6813 | 112931 | |
19 | style='text-align:center;' | 19 | 2 | 20 | 362 | 6860 | 130322 | |
20 | style='text-align:center;' | 22×5 | 6 | 42 | 546 | 9198 | 170898 | |
21 | style='text-align:center;' | 3×7 | 4 | 32 | 500 | 9632 | 196964 | |
22 | style='text-align:center;' | 2×11 | 4 | 36 | 610 | 11988 | 248914 | |
23 | style='text-align:center;' | 23 | 2 | 24 | 530 | 12168 | 279842 | |
24 | style='text-align:center;' | 23×3 | 8 | 60 | 850 | 16380 | 358258 | |
25 | style='text-align:center;' | 52 | 3 | 31 | 651 | 15751 | 391251 | |
26 | style='text-align:center;' | 2×13 | 4 | 42 | 850 | 19782 | 485554 | |
27 | style='text-align:center;' | 33 | 4 | 40 | 820 | 20440 | 538084 | |
28 | style='text-align:center;' | 22×7 | 6 | 56 | 1050 | 25112 | 655746 | |
29 | style='text-align:center;' | 29 | 2 | 30 | 842 | 24390 | 707282 | |
30 | style='text-align:center;' | 2×3×5 | 8 | 72 | 1300 | 31752 | 872644 | |
31 | style='text-align:center;' | 31 | 2 | 32 | 962 | 29792 | 923522 | |
32 | style='text-align:center;' | 25 | 6 | 63 | 1365 | 37449 | 1118481 | |
33 | style='text-align:center;' | 3×11 | 4 | 48 | 1220 | 37296 | 1200644 | |
34 | style='text-align:center;' | 2×17 | 4 | 54 | 1450 | 44226 | 1419874 | |
35 | style='text-align:center;' | 5×7 | 4 | 48 | 1300 | 43344 | 1503652 | |
36 | style='text-align:center;' | 22×32 | 9 | 91 | 1911 | 55261 | 1813539 | |
37 | style='text-align:center;' | 37 | 2 | 38 | 1370 | 50654 | 1874162 | |
38 | style='text-align:center;' | 2×19 | 4 | 60 | 1810 | 61740 | 2215474 | |
39 | style='text-align:center;' | 3×13 | 4 | 56 | 1700 | 61544 | 2342084 | |
40 | style='text-align:center;' | 23×5 | 8 | 90 | 2210 | 73710 | 2734994 | |
41 | style='text-align:center;' | 41 | 2 | 42 | 1682 | 68922 | 2825762 | |
42 | style='text-align:center;' | 2×3×7 | 8 | 96 | 2500 | 86688 | 3348388 | |
43 | style='text-align:center;' | 43 | 2 | 44 | 1850 | 79508 | 3418802 | |
44 | style='text-align:center;' | 22×11 | 6 | 84 | 2562 | 97236 | 3997266 | |
45 | style='text-align:center;' | 32×5 | 6 | 78 | 2366 | 95382 | 4158518 | |
46 | style='text-align:center;' | 2×23 | 4 | 72 | 2650 | 109512 | 4757314 | |
47 | style='text-align:center;' | 47 | 2 | 48 | 2210 | 103824 | 4879682 | |
48 | style='text-align:center;' | 24×3 | 10 | 124 | 3410 | 131068 | 5732210 | |
49 | style='text-align:center;' | 72 | 3 | 57 | 2451 | 117993 | 5767203 | |
50 | style='text-align:center;' | 2×52 | 6 | 93 | 3255 | 141759 | 6651267 |
For a prime number p,
\begin{align} \sigma0(p)&=2
n) | |
\\ \sigma | |
0(p |
&=n+1\\ \sigma1(p)&=p+1 \end{align}
because by definition, the factors of a prime number are 1 and itself. Also, where pn# denotes the primorial,
\sigma0(pn\#)=2n
since n prime factors allow a sequence of binary selection (
pi
Clearly,
1<\sigma0(n)<n
n>2
\sigmax(n)>n
n>1
x>0
The divisor function is multiplicative (since each divisor c of the product mn with
\gcd(m,n)=1
\gcd(a,b)=1\Longrightarrow\sigmax(ab)=\sigmax(a)\sigmax(b).
The consequence of this is that, if we write
n=
r | |
\prod | |
i=1 |
ai | |
p | |
i |
where r = ω(n) is the number of distinct prime factors of n, pi is the ith prime factor, and ai is the maximum power of pi by which n is divisible, then we have:
\sigmax(n)=
r | |
\prod | |
i=1 |
ai | |
\sum | |
j=0 |
jx | |
p | |
i |
=
r | |
\prod | |
i=1 |
\left(1+
x | |
p | |
i |
+
2x | |
p | |
i |
+ … +
aix | |
p | |
i |
\right).
which, when x ≠ 0, is equivalent to the useful formula:
\sigmax(n)=
r | |
\prod | |
i=1 |
| ||||||||||
|
.
When x = 0,
\sigma0(n)
\sigma0(n)=\prod
r | |
i=1 |
(ai+1).
This result can be directly deduced from the fact that all divisors of
n
(x1,x2,...,xi,...,xr)
0\lexi\leai
ai+1
xi
For example, if n is 24, there are two prime factors (p1 is 2; p2 is 3); noting that 24 is the product of 23×31, a1 is 3 and a2 is 1. Thus we can calculate
\sigma0(24)
\sigma0(24)=
2 | |
\prod | |
i=1 |
(ai+1)=(3+1)(1+1)=4 ⋅ 2=8.
The eight divisors counted by this formula are 1, 2, 4, 8, 3, 6, 12, and 24.
Euler proved the remarkable recurrence:[2] [3] [4]
\begin{align} \sigma1(n)&=\sigma1(n-1)+\sigma1(n-2)-\sigma1(n-5)-\sigma1(n-7)+\sigma1(n-12)+\sigma1(n-15)+ … \\[12mu] &=\sumi\in\N(-1)i+1\left(\sigma1\left(n-
1 | |
2 |
\left(3i2-i\right)\right)+\sigma1\left(n-
1 | |
2 |
\left(3i2+i\right)\right)\right), \end{align}
where
\sigma1(0)=n
\sigma1(x)=0
x<0
\tfrac{1}{2}\left(3i2\mpi\right)
For a non-square integer, n, every divisor, d, of n is paired with divisor n/d of n and
\sigma0(n)
\sqrtn
\sigma0(n)
\sigma1(n)
We also note s(n) = σ(n) − n. Here s(n) denotes the sum of the proper divisors of n, that is, the divisors of n excluding n itself. This function is used to recognize perfect numbers, which are the n such that s(n) = n. If s(n) > n, then n is an abundant number, and if s(n) < n, then n is a deficient number.
If is a power of 2,
n=2k
\sigma(n)=2 ⋅ 2k-1=2n-1
s(n)=n-1
As an example, for two primes
p,q:p<q
n=pq
Then
\sigma(n)=(p+1)(q+1)=n+1+(p+q),
\varphi(n)=(p-1)(q-1)=n+1-(p+q),
and
n+1=(\sigma(n)+\varphi(n))/2,
p+q=(\sigma(n)-\varphi(n))/2,
where
\varphi(n)
Then, the roots of
(x-p)(x-q)=x2-(p+q)x+n=x2-[(\sigma(n)-\varphi(n))/2]x+[(\sigma(n)+\varphi(n))/2-1]=0
express p and q in terms of σ(n) and φ(n) only, requiring no knowledge of n or
p+q
p=(\sigma(n)-\varphi(n))/4-\sqrt{[(\sigma(n)-\varphi(n))/4]2-[(\sigma(n)+\varphi(n))/2-1]},
q=(\sigma(n)-\varphi(n))/4+\sqrt{[(\sigma(n)-\varphi(n))/4]2-[(\sigma(n)+\varphi(n))/2-1]}.
Also, knowing and either
\sigma(n)
\varphi(n)
p+q
\sigma(n)
\varphi(n)
In 1984, Roger Heath-Brown proved that the equality
\sigma0(n)=\sigma0(n+1)
is true for infinitely many values of, see .
Two Dirichlet series involving the divisor function are:
infty | |
\sum | |
n=1 |
\sigmaa(n) | |
ns |
=\zeta(s)\zeta(s-a) for s>1,s>a+1,
where
\zeta
infty | |
\sum | |
n=1 |
d(n) | |
ns |
=\zeta2(s) for s>1,
and a Ramanujan identity
infty | |
\sum | |
n=1 |
\sigmaa(n)\sigmab(n) | |
ns |
=
\zeta(s)\zeta(s-a)\zeta(s-b)\zeta(s-a-b) | |
\zeta(2s-a-b) |
,
which is a special case of the Rankin–Selberg convolution.
A Lambert series involving the divisor function is:
infty | |
\sum | |
n=1 |
qn\sigmaa(n)=
infty | |
\sum | |
n=1 |
infty | |
\sum | |
j=1 |
naqjn=
infty | |
\sum | |
n=1 |
naqn | |
1-qn |
for arbitrary complex |q| ≤ 1 and a. This summation also appears as the Fourier series of the Eisenstein series and the invariants of the Weierstrass elliptic functions.
For
k>0
cm(n)
\sigmak(n)=
infty | |
\zeta(k+1)n | |
m=1 |
cm(n) | |
mk+1 |
.
cm(n)
\zeta(k+1)nk
\sigmak(n)=\zeta(k+1)nk\left[1+
(-1)n | |
2k+1 |
+
| ||||
3k+1 |
+
| ||||
4k+1 |
+ … \right]
In little-o notation, the divisor function satisfies the inequality:
forall\varepsilon>0, d(n)=o(n\varepsilon).
\limsupn\toinfty
logd(n) | |
logn/loglogn |
=log2.
\liminfn\toinftyd(n)=2.
In Big-O notation, Peter Gustav Lejeune Dirichlet showed that the average order of the divisor function satisfies the following inequality:
forallx\geq1,\sumn\leqd(n)=xlogx+(2\gamma-1)x+O(\sqrt{x}),
\gamma
O(\sqrt{x})
The behaviour of the sigma function is irregular. The asymptotic growth rate of the sigma function can be expressed by:
\limsupn → infty
\sigma(n) | |
nloglogn |
=e\gamma,
where lim sup is the limit superior. This result is Grönwall's theorem, published in 1913 . His proof uses Mertens' third theorem, which says that:
\limn\toinfty
1 | |
logn |
\prodp\le
p | |
p-1 |
=e\gamma,
where p denotes a prime.
In 1915, Ramanujan proved that under the assumption of the Riemann hypothesis, Robin's inequality
\sigma(n)<e\gammanloglogn
Robin also proved, unconditionally, that the inequality:
\sigma(n)<e\gammanloglogn+
0.6483 n | |
loglogn |
A related bound was given by Jeffrey Lagarias in 2002, who proved that the Riemann hypothesis is equivalent to the statement that:
\sigma(n)<Hn+
Hn | |
e |
log(Hn)
Hn