Normal form (dynamical systems) explained

In mathematics, the normal form of a dynamical system is a simplified form that can be useful in determining the system's behavior.

Normal forms are often used for determining local bifurcations in a system. All systems exhibiting a certain type of bifurcation are locally (around the equilibrium) topologically equivalent to the normal form of the bifurcation. For example, the normal form of a saddle-node bifurcation is

dx
dt

=\mu+x2

where

\mu

is the bifurcation parameter. The transcritical bifurcation
dx
dt

=rlnx+x-1

near

x=1

can be converted to the normal form
du
dt

=\muu-u2+O(u3)

with the transformation

u=x-1,\mu=r+1

.[1]

See also canonical form for use of the terms canonical form, normal form, or standard form more generally in mathematics.

Further reading

Notes and References

  1. Strogatz, Steven. "Nonlinear Dynamics and Chaos". Westview Press, 2001. p. 52.