In category theory, an abstract mathematical discipline, a nodal decomposition of a morphism
\varphi:X\toY
\varphi
\varphi=\sigma\circ\beta\circ\pi
\pi
\beta
\sigma
If it exists, the nodal decomposition is unique up to an isomorphism in the following sense: for any two nodal decompositions
\varphi=\sigma\circ\beta\circ\pi
\varphi=\sigma'\circ\beta'\circ\pi'
η
\theta
\pi'=η\circ\pi,
\beta=\theta\circ\beta'\circη,
\sigma'=\sigma\circ\theta.
This property justifies some special notations for the elements of the nodal decomposition:
\begin{align} &\pi=\operatorname{coim}infty\varphi,&&P=\operatorname{Coim}infty\varphi,\\ &\beta=\operatorname{red}infty\varphi,&&\\ &\sigma=\operatorname{im}infty\varphi,&&Q=\operatorname{Im}infty\varphi, \end{align}
\operatorname{coim}infty\varphi
\operatorname{Coim}infty\varphi
\varphi
\operatorname{im}infty\varphi
\operatorname{Im}infty\varphi
\varphi
\operatorname{red}infty\varphi
\varphi
In these notations the nodal decomposition takes the form
\varphi=\operatorname{im}infty\varphi\circ\operatorname{red}infty\varphi\circ\operatorname{coim}infty\varphi.
{lK}
\varphi
\varphi=\operatorname{im}\varphi\circ\operatorname{red}\varphi\circ\operatorname{coim}\varphi
\operatorname{im}\varphi=\ker(\operatorname{coker}\varphi)
\operatorname{coim}\varphi=\operatorname{coker}(\ker\varphi)
\operatorname{red}\varphi
\varphi
If a morphism
\varphi
{lK}
η
\theta
\operatorname{coim}infty\varphi=η\circ\operatorname{coim}\varphi,
\operatorname{red}\varphi=\theta\circ\operatorname{red}infty\varphi\circη,
\operatorname{im}infty\varphi=\operatorname{im}\varphi\circ\theta.
A category
{lK}
\varphi
{lK}
{lK}
{lK}
\varphi=\operatorname{im}\varphi\circ\operatorname{red}\varphi\circ\operatorname{coim}\varphi
If a pre-abelian category
{lK}
{lK}
More generally, suppose a category
{lK}
{lK}
{lK}
{lK}
The category Ste of stereotype spaces (being non-abelian) has nodal decomposition, as well as the (non-additive) category SteAlg of stereotype algebras .
\varepsilon:A\toB
\mu:C\toD
\alpha:A\toC
\beta:B\toD
\beta\circ\varepsilon=\mu\circ\alpha
\delta:B\toC
\delta\circ\varepsilon=\alpha
\mu\circ\delta=\beta
\mu:C\toD
\varepsilon:A\toB
\alpha:A\toC
\beta:B\toD
\beta\circ\varepsilon=\mu\circ\alpha
\delta:B\toC
\delta\circ\varepsilon=\alpha
\mu\circ\delta=\beta
{lK}
{lK}
{lK}
X
\operatorname{SMono}(X)
X
{lK}
X
\operatorname{SEpi}(X)
X
{lK}
\mu
\mu=\mu'\circ\varepsilon
\varepsilon
{lK}
\varepsilon
\varepsilon=\mu\circ\varepsilon'
\mu