Nitridosilicate Explained

The nitridosilicates are chemical compounds that have anions with nitrogen bound to silicon. Counter cations that balance the electric charge are mostly electropositive metals from the alkali metals, alkaline earths or rare earth elements. Silicon and nitrogen have similar electronegativities, so the bond between them is covalent. Nitrogen atoms are arranged around a silicon atom in a tetrahedral arrangement.

Related compounds include pnictogenidosilicates :phosphidosilicates, arsenidosilicates and antimonosilicates; pnictogenidogernamates: phosphidogermanates. By replacing silicon, there are also nitridogermanates, nitridostannates, nitridotantalates and nitridotitanates.

Use

Nitridosilicates are used as host substances for europium in LED phosphors. Examples include CASN (calcium aluminium silicide nitride) (CaAlSiN3), SCASN (SrCaAlSiN3) and SCSN (SrCaSiN3). These fluoresce red.[1]

Production

Nitridosilicates can be made in a solid state reaction by heating silicon nitride with metallic nitrides in a nitrogen atmosphere at over 1300°C. If the mixtures are exposed to oxygen or air, then oxides or oxynitridosilicates are produced instead. Instead of metal nitrides, ammine complexes, amides or imides can be used instead. In place of the highly stable silicon nitride, silicon diimide can be used.[2] Carbothermal reduction involves using a metal oxide or carbonate heated with carbon in a nitrogen atmosphere.

Properties

The ratio of silicon to nitrogen varies from 1:4 to 7:10 (0.25 to 0.7) with increased condensation, and fewer sites for metals with high silicon content. At a ratio of 3:4 (0.75) there is no longer capacity for metal, as that is silicon nitride.[3] The more condensed substances, with lower nitrogen content, have greater number of silicon atoms surrounding the nitrogen. This coordination number can vary from one to four, with the most common being three. The silicon atom always is coordinated by four nitrogen atoms. In the silicates, silicon is surrounded by four oxygen atoms, but each oxygen is only connected to one or two silicon atoms, and only very rarely three. So nitridosilicates can form more diverse structures than the silicates.[4]

Nitridosilicates with higher proportion of silicon (more condensed) are more resistant to attack by water and oxygen, and so can be exposed to the atmosphere without decomposition. These condensed nitridosilicates are mechanically strong, and resistant to heat, acids and alkalis.[5]

SiN4 tetrahedra can be connected to each other via vertices or edges. This differs from SiO4 which only connects via vertices.[5]

Use

Nitridosilicates have been used to make abrasives, turbine blades, cutting tools and phosphors.[6]

Nitridosilicates

nameformulaformulaweightcrystal

system

space

group

unit cellvolumedensitycommentsref
LiSi2N3
Li2SiN2[7]
Li5SiN3
Li8SiN4
Li18Si3N10
Li21Si3N11I4a=9.4584 c=9.5194antifluorite structure
BeSiN2[8]
MgSiN2
NaSi2N3
Ca2Si5N8332.64monoclinicCca = 14.3280 b = 5.61165 c = 9.69406 β = 112.1484 Z=4 721.92 3.06Eu orange fluorescence[9]
CaSiN2
Ca3SiN3HmonoclinicC2/ca = 5.236 b = 10.461 c = 16.389 β = 91.182° Z = 8semiconductor: band gap 3.1 eV[10]
Ca4SiN4
Ca5Si2N6
Ca12Si4[SiN<sub>4</sub>]triclinicPa 9.0103 b 9.0218 c 13.8252 α 71.053° β 82.738° γ 69.763°black[11]
Ca16Si17N34
CaMg3SiN4I41/a[12]
Ca5[Si<sub>2</sub>Al<sub>2</sub>N<sub>8</sub>]orthorhombicPbcna = 9.255 b = 6.140 c = 15.578[13]
LiCa3Si2N5monoclinicC2/ca = 5.145 b = 20.380 c = 10.357 β = 91.24°[14]
Li4Ca3Si2N6288.24monoclinicC2/ma=5.787 b=9.705 c=5.977 β=90.45335.72.852[15]
Li2CaSi2N4
Li2Ca2Mg2Si2N6
Li2Ca3MgSi2N6
CaMg3SiN4I41/aa = 11.424 c = 13.445 Z=16
CaAlSiN3orthorhombicCmc21Eu yellow fluorescence[16]
CaAlSi4N7orthorhombicPna21a = 11.6819, b = 21.0193, c = 4.9177 Å[17]
Ca4AlSiN5orthorhombicPna21a 11.2058 b 9.0512 c 6.0203faint red
Ca5Al2Si2N8orthorhombicPbcaa= 9.255 b = 6.140 c = 15.578 Z=4885.23.171yellow[18]
CaScSi4N7
Manganese silicide dinitrideMnSiN2orthorhombic Pna21a = 5.271, b = 6.521, and c = 5.0706 V=174.26intense red[19]
Fe2Si5N8364.23monoclinicCca= 14.0408 b = 5.32635 c = 9.5913 β = 110.728 Z=4decompose 1370K; brown
ZnSiN2
SrSiN2
Sr2Si5N8orthorhombicPmn21a = 5.71006 b = 6.81914 c = 9.33599 Z=2363.523.908Eu red fluorescence[20]
SrSi6N8
SrSi7N10
Sr5Si7P2N16920.83Pnmaa=5.6748 b=28.0367 c=9.5280 Z=41522.14.018[21]
SrAlSi4N7orthorhombicPna21a = 11.742 b = 21.391 c = 4.966 Z = 81247.2[22]
Li2SrSi2N4cubica=10.69 Z=121220[23]
Li4Sr3Si2N6monoclinicC2/ma = 6.127, b = 9.687, c = 6.220, β = 90.24° Z=2369.13.876
SrBeSi2N4p2ca=4.86082 c=9.42264 Z=2[24]
SrMg3SiN4I41/aa = 11.495 c = 13.512 Z=16
Sr8Mg7Si9N22Cma 15.280 b 7.4691 c 10.936 β 110.462°[25]
SrAlSiN3Cmc21
SrAlSi4N7Pna21
SrScSi4N7
YScSi4N6ChexagonalP63mca=5.9109 c=9.677[26]
CaYSi4N7
SrYSi4N7
Ca8In2SiN4orthorhombicIbama = 12.904 b = 9.688 c = 10.899 Z = 4metallic
BaSiN2
Ba5Si2N6
Ba2Si5N8orthorhombicPmn21Eu red fluorescence
BaSi6N8Imm2a = 7.9316, b = 9.3437, c = 4.8357, Z = 2358.38[27]
BaSi7N10monoclinica = 6.8729, b = 6.7129, c = 9.6328, β = 106.269, Z = 2most condensed[28]
Ba6Si6N10O2(CN2)Pa = 16.255, c = 5.469, Z = 3yellow, grown in liquid sodium[29]
BaMg3SiN4Pa = 3.451 b = 6.069 c = 6.101 α = 85.200 β = 73.697 γ = 73.566° Z=1[30]
Ba2AlSi5N9triclinicP1a = 9.860 b = 10.320 c = 10.346 α = 90.37° β = 118.43° γ = 103.69° Z = 4[31]
Ba5Si11Al7N25Pnnma = 9.5923, b = 21.3991, c = 5.8889 Å Z = 2with Eu yellow emission[32]
BaSi4Al3N9P21/Ca = 5.8465, b = 26.726, c = 5.8386 Å, β = 118.897° and Z = 4with Eu blue emission
BaScSi4N7
BaYSi4N7
LaSi3N5
La3Si6N11
La5Si3N9
La7Si6N15
Li5La5Si4N12tetragonalPb2a = 11.043 c = 5.573 Z = 2[33]
calcium lanthanum nitridosilicateCaLaSiN3Ca can be substituted by Yb or Eu[34]
CaLaSi4N7
CeSi3N5
Ce3Si6N11
Ce3Si5N9
Ce7Si6N15triclinic
Ce7Si6N15trigonal
Li5Ce5Si4N12tetragonalPb2a = 10.978 c = 5.514 Z = 2
Pr3Si6N11
Pr5Si3N9
Pr7Si6N15
Ba2Nd7Si11N23dark blue[35]
Sm3Si6M11
Ca3Sm3[Si<sub>9</sub>N<sub>17</sub>]cubicP4_3ma=7.3950; Z=1404.4[36]
Eu2SiN3Cmcaa = 5.42, b = 10.610, c = 11.629, Z = 8[37]
dieuropium penta siliconoctanitrideEu2Si5N8orthorhombicPnm21a=5.7094 b=6.8207 c=9.3291 Z=2363.295.087red[38]
EuMg3SiN4I41/aa = 11.511 c = 13.552 Z=16
Ca3Yb3[Si<sub>9</sub>N<sub>17</sub>]cubicP4_3ma=730.20 Z=1389.3
BaYbSi4N7includes NSi4 clusters[39]
europium ytterbium tetrasiliconheptanitrideEuYbSi4N7hexagonalP63mca=5.9822 c=9.7455302.035.887brown
SrYbSi4N7
EuYbSi4N7
CaLuSi4N7
SrLuSi4N7
BaLuSi4N7
Pb2Si5N8666.90orthorhombicPmn21a = 5.774 b = 6.837 c = 9.350269.116.001Pb-Pb dumbells

Notes and References

  1. Book: Schubert . E. Fred . Light-Emitting Diodes . 3 February 2018 . E. Fred Schubert . 978-0-9863826-6-6 . en. 3rd .
  2. Schnick . Wolfgang . Huppertz . Hubert . Nitridosilicates-A Significant Extension of Silicate Chemistry . Chemistry - A European Journal . May 1997 . 3 . 5 . 679–683 . 10.1002/chem.19970030505.
  3. ten Kate. Otmar M.. Zhang. Zhijun. van Ommen. J. Ruud. Hintzen. H. T. (Bert). 2018. Dependence of the photoluminescence properties of Eu 2+ doped M–Si–N (M = alkali, alkaline earth or rare earth metal) nitridosilicates on their structure and composition. Journal of Materials Chemistry C. en. 6. 21. 5671–5683. 10.1039/C8TC00885J. 2050-7526.
  4. ten Kate. Otmar M.. Zhang. Zhijun. Hintzen. H. T. (Bert). 2017. On the relations between the bandgap, structure and composition of the M–Si–N (M = alkali, alkaline earth or rare-earth metal) nitridosilicates. Journal of Materials Chemistry C. en. 5. 44. 11504–11514. 10.1039/C7TC04259K. 2050-7526. free.
  5. The Ion Exchange Approach - Expanding Elemental Variety in Nitridosilicate Chemistry. Philipp Bielec. 27 July 2019.
  6. Xie . Rong-Jun . Hirosaki . Naoto . Li . Yuanqiang . Takeda . Takashi . Rare-Earth Activated Nitride Phosphors: Synthesis, Luminescence and Applications . Materials . 21 June 2010 . 3 . 6 . 3777–3793 . 5521753. 10.3390/ma3063777. 2010Mate....3.3777X . 18883144 . free .
  7. Casas-Cabanas. M.. Santner. H.. Palacín. M.R.. May 2014. The Li–Si–(O)–N system revisited: Structural characterization of Li21Si3N11 and Li7SiN3O. Journal of Solid State Chemistry. en. 213. 152–157. 10.1016/j.jssc.2014.02.022. 2014JSSCh.213..152C.
  8. Kong. Yuwei. Song. Zhen. Wang. Shuxin. Xia. Zhiguo. Liu. Quanlin. 2018-02-19. The Inductive Effect in Nitridosilicates and Oxysilicates and Its Effects on 5d Energy Levels of Ce 3+. Inorganic Chemistry. en. 57. 4. 2320–2331. 10.1021/acs.inorgchem.7b03253. 29394040. 0020-1669.
  9. Bielec. Philipp. Janka. Oliver. Block. Theresa. Pöttgen. Rainer. Schnick. Wolfgang. 2018-02-23. Fe 2 Si 5 N 8 : Access to Open-Shell Transition-Metal Nitridosilicates. Angewandte Chemie International Edition. en. 57. 9. 2409–2412. 10.1002/anie.201713006. 29336096.
  10. Dickman . Matthew J. . Schwartz . Benjamin V. G. . Latturner . Susan E. . 2017-08-07 . Low-Dimensional Nitridosilicates Grown from Ca/Li Flux: Void Metal Ca 8 In 2 SiN 4 and Semiconductor Ca 3 SiN 3 H . Inorganic Chemistry . en . 56 . 15 . 9361–9368 . 10.1021/acs.inorgchem.7b01532 . 28749660 . 0020-1669.
  11. Link . Lukas . Niewa . Rainer . 2022-05-25 . Diversity in Nitridosilicate Chemistry: The Nitridoalumosilicate Ca 4 (AlSiN 5) and the Nitridosilicate Silicide Ca 12 Si 4 [SiN 4 ] ]. Zeitschrift für anorganische und allgemeine Chemie . en . 648 . 10 . 10.1002/zaac.202200004 . 0044-2313. free .
  12. Schmiechen . Sebastian . Schneider . Hajnalka . Wagatha . Peter . Hecht . Cora . Schmidt . Peter J. . Schnick . Wolfgang . 2014-04-22 . Toward New Phosphors for Application in Illumination-Grade White pc-LEDs: The Nitridomagnesosilicates Ca[Mg 3 SiN 4 ]

    Ce 3+, Sr[Mg 3 SiN 4 ]:Eu 2+, and Eu[Mg 3 SiN 4 ] ]

    . Chemistry of Materials . en . 26 . 8 . 2712–2719 . 10.1021/cm500610v . 0897-4756.
  13. Ottinger . Frank . Cuervo-Reyes . Eduardo . Nesper . Reinhard . May 2010 . Synthesis, Crystal and Electronic Structure of the Nitridoaluminosilicate Ca 5 [Si 2 Al 2 N 8 ] ]. Zeitschrift für anorganische und allgemeine Chemie . en . 636 . 6 . 1085–1089 . 10.1002/zaac.201000046 . 0044-2313.
  14. Lupart . Saskia . Schnick . Wolfgang . October 2012 . LiCa 3 Si 2 N 5 – A Lithium Nitridosilicate with a [Si 2 N 5 ] 7– Double-Chain ]. Zeitschrift für anorganische und allgemeine Chemie . en . 638 . 12–13 . 2015–2019 . 10.1002/zaac.201200106 . 0044-2313.
  15. Pagano. Sandro. Lupart. Saskia. Schmiechen. Sebastian. Schnick. Wolfgang. September 2010. Li4Ca3Si2N6 and Li4Sr3Si2N6 - Quaternary Lithium Nitridosilicates with Isolated [Si2N6]10- Ions]. Zeitschrift für anorganische und allgemeine Chemie. en. 636. 11. 1907–1909. 10.1002/zaac.201000163.
  16. Watanabe. Hiromu. Wada. Hiroshi. Seki. Keiichi. Itou. Masumi. Kijima. Naoto. 2008. Synthetic Method and Luminescence Properties of Sr[sub x]Ca[sub 1−x]AlSiN[sub 3]:Eu[sup 2+] Mixed Nitride Phosphors]. Journal of the Electrochemical Society. en. 155. 3. F31. 10.1149/1.2829880.
  17. Yoshimura. Fumitaka. Yamane. Hisanori. Yamada. Takahiro. 2020-01-06. Synthesis, Crystal Structure, and Luminescence Properties of a White-Light-Emitting Nitride Phosphor, Ca 0.99 Eu 0.01 AlSi 4 N 7. Inorganic Chemistry. en. 59. 1. 367–375. 10.1021/acs.inorgchem.9b02609. 31808685. 208744271 . 0020-1669.
  18. Ottinger . Frank . Cuervo-Reyes . Eduardo . Nesper . Reinhard . May 2010 . Synthesis, Crystal and Electronic Structure of the Nitridoaluminosilicate Ca 5 [Si 2 Al 2 N 8 ] ]. Zeitschrift für anorganische und allgemeine Chemie . en . 636 . 6 . 1085–1089 . 10.1002/zaac.201000046 . 0044-2313.
  19. Esmaeilzadeh. Saeid. Hålenius. Ulf. Valldor. Martin. May 2006. Crystal Growth, Magnetic, and Optical Properties of the Ternary Nitride MnSiN 2. Chemistry of Materials. 18. 11. 2713–2718. 10.1021/cm060382t.
  20. Bielec. Philipp. Nelson. Ryky. Stoffel. Ralf P.. Eisenburger. Lucien. Günther. Daniel. Henß. Ann-Kathrin. Wright. Jonathan P.. Oeckler. Oliver. Dronskowski. Richard. Schnick. Wolfgang. 2019-01-28. Cationic Pb 2 Dumbbells Stabilized in the Highly Covalent Lead Nitridosilicate Pb 2 Si 5 N 8. Angewandte Chemie International Edition. en. 58. 5. 1432–1436. 10.1002/anie.201812457. 30536686 . 54473446 . 1433-7851.
  21. Dialer . Marwin . Pointner . Monika M. . Strobel . Philipp . Schmidt . Peter J. . Schnick . Wolfgang . 2023-12-28 . (Dis)Order and Luminescence in Silicon-Rich (Si,P)–N Network Sr 5 Si 7 P 2 N 16 :Eu 2+ . Inorganic Chemistry . en . 10.1021/acs.inorgchem.3c04109 . 38154029 . 266597393 . 0020-1669.
  22. Hecht . Cora . Stadler . Florian . Schmidt . Peter J. . auf der Günne . Jörn Schmedt . Baumann . Verena . Schnick . Wolfgang . 2009-04-28 . SrAlSi 4 N 7 :Eu 2+ − A Nitridoalumosilicate Phosphor for Warm White Light (pc)LEDs with Edge-Sharing Tetrahedra . Chemistry of Materials . en . 21 . 8 . 1595–1601 . 10.1021/cm803231h . 0897-4756.
  23. Ding. Jianyan. You. Hongpeng. Wang. Yichao. Ma. Bo. Zhou. Xufeng. Ding. Xin. Cao. Yaxin. Chen. Hang. Geng. Wanying. Wang. Yuhua. 2018. Site occupation and energy transfer of Ce 3+ -activated lithium nitridosilicate Li 2 SrSi 2 N 4 with broad-yellow-light-emitting property and excellent thermal stability. Journal of Materials Chemistry C. en. 6. 13. 3435–3444. 10.1039/C7TC04397J. 2050-7526.
  24. Strobel . Philipp . Weiler . Volker . Schmidt . Peter J. . Schnick . Wolfgang . 2018-05-17 . Sr[BeSi 2 N 4 ]

    Eu 2+ /Ce 3+ and Eu[BeSi 2 N 4 ]: Nontypical Luminescence in Highly Condensed Nitridoberyllosilicates ]

    . Chemistry – A European Journal . en . 24 . 28 . 7243–7249 . 10.1002/chem.201800912 . 29575174 . 0947-6539.
  25. Li . Chao . Zheng . Hong-Wei . Wei . Heng-Wei . Su . Jie . Liao . Fu-Hui . Zhang . Zhen-Yi . Xu . Ling . Yang . Zu-Pei . Wang . Xiao-Ming . Jiao . Huan . 2018 . Narrow-band blue emitting nitridomagnesosilicate phosphor Sr 8 Mg 7 Si 9 N 22 :Eu 2+ for phosphor-converted LEDs . Chemical Communications . en . 54 . 82 . 11598–11601 . 10.1039/C8CC07218C . 30264071 . 1359-7345.
  26. Yan . Chunpei . Liu . Zhanning . Zhuang . Weidong . Liu . Ronghui . Xing . Xianran . Liu . Yuanhong . Chen . Guantong . Li . Yanfeng . Ma . Xiaole . 2017-09-18 . YScSi 4 N 6 C:Ce 3+ —A Broad Cyan-Emitting Phosphor To Weaken the Cyan Cavity in Full-Spectrum White Light-Emitting Diodes . Inorganic Chemistry . en . 56 . 18 . 11087–11095 . 10.1021/acs.inorgchem.7b01408 . 0020-1669.
  27. Stadler. Florian. Schnick. Wolfgang. April 2007. Das reduzierte Nitridosilicat BaSi6N8. Zeitschrift für anorganische und allgemeine Chemie. de. 633. 4. 589–592. 10.1002/zaac.200600356.
  28. Huppertz. Hubert. Schnick. Wolfgang. February 1997. Edge-sharing SiN 4 Tetrahedra in the Highly Condensed Nitridosilicate BaSi 7 N 10. Chemistry - A European Journal. en. 3. 2. 249–252. 10.1002/chem.19970030213. 24022955.
  29. Pagano. Sandro. Oeckler. Oliver. Schröder. Thorsten. Schnick. Wolfgang. June 2009. Ba 6 Si 6 N 10 O 2 (CN 2) - A Nitridosilicate with a NPO-Zeolite Structure Type Containing Carbodiimide Ions. European Journal of Inorganic Chemistry. en. 2009. 18. 2678–2683. 10.1002/ejic.200900157.
  30. Schmiechen . Sebastian . Strobel . Philipp . Hecht . Cora . Reith . Thomas . Siegert . Markus . Schmidt . Peter J. . Huppertz . Petra . Wiechert . Detlef . Schnick . Wolfgang . Nitridomagnesosilicate Ba[Mg 3 SiN 4 ]:Eu 2+ and Structure–Property Relations of Similar Narrow-Band Red Nitride Phosphors . Chemistry of Materials . 10 March 2015 . 27 . 5 . 1780–1785 . 10.1021/cm504604d.
  31. Kechele . Juliane A. . Hecht . Cora . Oeckler . Oliver . Schmedt auf der Günne . Jörn . Schmidt . Peter J. . Schnick . Wolfgang . 2009-04-14 . Ba 2 AlSi 5 N 9 —A New Host Lattice for Eu 2+ -Doped Luminescent Materials Comprising a Nitridoalumosilicate Framework with Corner- and Edge-Sharing Tetrahedra . Chemistry of Materials . en . 21 . 7 . 1288–1295 . 10.1021/cm803233d . 0897-4756.
  32. Hirosaki. Naoto. Takeda. Takashi. Funahashi. Shiro. Xie. Rong-Jun. 2014-07-22. Discovery of New Nitridosilicate Phosphors for Solid State Lighting by the Single-Particle-Diagnosis Approach. Chemistry of Materials. en. 26. 14. 4280–4288. 10.1021/cm501866x. 0897-4756. free.
  33. Lupart . Saskia . Zeuner . Martin . Pagano . Sandro . Schnick . Wolfgang . June 2010 . Chain‐Type Lithium Rare‐Earth Nitridosilicates – Li 5 Ln 5 Si 4 N 12 with Ln = La, Ce . European Journal of Inorganic Chemistry . en . 2010 . 18 . 2636–2641 . 10.1002/ejic.201000245 . 1434-1948.
  34. ten Kate . O M . Hintzen . H T . van der Kolk . E . Low energy 4f-5d transitions in lanthanide doped CaLaSiN 3 with low degree of cross-linking between SiN 4 tetrahedra . Journal of Physics: Condensed Matter . 24 September 2014 . 26 . 38 . 385502 . 10.1088/0953-8984/26/38/385502. 25186054 . 2014JPCM...26L5502T . 29879915 .
  35. Huppertz. Hubert. Schnick. Wolfgang. 1997-12-15. Ba2Nd7Si11N23—A Nitridosilicate with a Zeolite-Analogous Si–N Structure. Angewandte Chemie International Edition in English. en. 36. 23. 2651–2652. 10.1002/anie.199726511. 0570-0833.
  36. Huppertz. Hubert. Oeckler. Oliver. Lieb. Alexandra. Glaum. Robert. Johrendt. Dirk. Tegel. Marcus. Kaindl. Reinhard. Schnick. Wolfgang. 2012-08-27. Ca 3 Sm 3 [Si 9 N 17 ] and Ca 3 Yb 3 [Si 9 N 17 ] Nitridosilicates with Interpenetrating Nets that Consist of Star-Shaped [N [4] (SiN 3) 4 ] Units and [Si 5 N 16 ] Supertetrahedra]. Chemistry - A European Journal. en. 18. 35. 10857–10864. 10.1002/chem.201200813. 22829445.
  37. Zeuner. Martin. Pagano. Sandro. Matthes. Philipp. Bichler. Daniel. Johrendt. Dirk. Harmening. Thomas. Pöttgen. Rainer. Schnick. Wolfgang. 2009-08-12. Mixed Valence Europium Nitridosilicate Eu 2 SiN 3. Journal of the American Chemical Society. en. 131. 31. 11242–11248. 10.1021/ja9040237. 19610643. 0002-7863.
  38. Huppertz. H.. Schnick. W.. 1997-12-15. Eu 2 Si 5 N 8 and EuYbSi 4 N 7 . The First Nitridosilicates with a Divalent Rare Earth Metal. Acta Crystallographica Section C Crystal Structure Communications. 53. 12. 1751–1753. 10.1107/S0108270197008767. 1997AcCrC..53.1751H . 0108-2701.
  39. Huppertz. Hubert. Schnick. Wolfgang. 1996-09-20. BaYbSi4N7—Unexpected Structural Possibilities in Nitridosilicates. Angewandte Chemie International Edition in English. en. 35. 17. 1983–1984. 10.1002/anie.199619831. 0570-0833.