Hydridonitride Explained
In chemistry, a hydridonitride (nitridohydride, nitride hydride, or hydride nitride) is a chemical compound that contains both hydride and nitride ions. These inorganic compounds are distinct from inorganic amides and imides as the hydrogen does not share a bond with nitrogen, and usually contain a larger proportion of metals.
Structure
The hydride ion is stabilised by being surrounded by electropositive elements such as alkalis or alkaline earths.[1] Quaternary compounds exist where nitrogen forms a complex with bonds to a transition or main group element. The hydride requires the presence of another alkaline earth element.[1]
Production
Hydridonitrides may be produced by a process called self-propagating high-temperature synthesis (SHS) where a metal nitride is ignited in a hydrogen atmosphere.[2]
A metal (Ti, Zr, Hf, Y) can also be ignited in an atmosphere mixing hydrogen and nitrogen, and a hydridonitride is formed exothermically.[3]
The molten metal flux technique involves dissolving metal nitrides and hydrides in an excess of molten alkaline earth metal, by heating till everything is molten, and then cooling until crystals form, but the metal is still liquid. Draining the liquid metal (and centrifuging) leaves the crystals of hydridonitride behind. A eutectic molten metal allows it to be cooled more.[1]
If liquid alkali metal is used as a flux to grow a hydridonitride crystal, excess metal can be removed using liquid ammonia.[4]
Properties
Some hydridonitrides are sensitive to water vapour in air. For non-stoichimetric compounds, as the proportion of hydrogen increases, the unit cell dimensions also increase, so hydrogen is not merely filling holes.[5] When heated to a sufficiently high temperature, hydridonitrides lose hydrogen first to form a metallic nitride or alloy.[6]
Room temperature superconductor
One lutetium hydride doped with nitrogen is claimed to be a room-temperature superconductor at up to 21°C at a pressure of 1 GPa, which is considerably lower than for other polyhydrides.[7] This has been called "red matter"[8] as it is red under high pressure, but blue at ambient conditions.[9] [10] The claim has been met with some skepticism as it was made by the same team that made similar claims retracted by Nature in 2022,[11] [12] [13] [14] [15] claimed observation of solid metallic hydrogen in 2016 as well as other allegations.[16] First attempts to replicate the results have failed.[17] [18] Ashcroft suggested metallic hydrogen could superconduct in 1968[19] at great pressures and in 2004 similarly that dense group IVa hydrides (as the new material) could also be superconductors at more accessible pressures.[20]
List
name | formula | system | space group | unit cell(lengths in Å, volume in Å3) | structure | comment | optical | reference |
---|
Lithium nitride hydride Lithium hydridonitride | | tetragonal | I41/a | a = 4.9865, c = 9.877, V = 234.9, Z = 4 | | | yellow | |
calcium hydridonitride | | cubic | Fd3m | a = 10.13, Z = 16 | | | brown-black | [21] |
tricalcium silicon trinitride hydride | | monoclinic | C2/c | a = 5.236, b = 10.461, c = 16.389, β = 91.182°, Z = 8 | tetrahedra in chains, octahedra | | | [22] |
Titanium hydridonitride | | | | | | | | |
| | | | | | | | |
| | hexagonal | P63/m | a= 7.22772 c=5.06172 Z=2 V=228.998 | | | | [23] |
hexacalcium dichromium hexanitride hydride | | | R | a = 9.0042, c = 9.1898, Z = 3 | planar,, octahedral | | | [24] |
strontium hydridonitride | | | Rm | a = 3.870, c = 18.958 | | | orange-yellow or black | [25] |
Lithium distrontium dihydride nitride | | orthorhombic | Pnma | a = 7.4714, b = 3.7028, c = 13.2986, Z = 4 | ,, | | | [26] |
| | | | | | | | |
zirconium hydridonitride | | | | | | | | |
| | | | | | | | |
| | | | | | | | |
barium hydridonitride | | hexagonal | Rm | a = 4.0262, c = 20.469 | | pure conductor | | [27] |
Tribarium chromium trinitride hydride | | hexagonal | P63/m | a = 8.0270, c = 5.6240, Z = 2 V=313.83 | planar, octahedral | nonmagnetic insulator | green | [28] [29] |
Lithium dieuropium nitride trihydride | | orthorhombic | Pnma | a = 7.4213, b = 3.6726, c = 13.1281, Z = 4 | and | | ruby red | [30] |
Lutetium hydride nitride | | | Fmm | | | < 1 GPa | blue | [31] |
Lutetium hydride nitride | | | Immm | | | super conductor at 1 GPa and 21 °C | pink | |
Hafnium hydridonitride | | hcp | | a = 3.241, c = 5.198 | | | | |
Hafnium hydridonitride | HfNH | hcp | | a = 3.216, c = 5.259 | | | | |
Thorium nitride hydride | | fcc | | a = 5.596 | | | | [32] | |
Notes and References
- Falb . Nathaniel W. . Neu . Jennifer N. . Besara . Tiglet . Whalen . Jeffrey B. . Singh . David J. . Siegrist . Theo . 14 February 2019 . Ba3CrN3H: A New Nitride-Hydride with Trigonal Planar Cr . Inorganic Chemistry . 58 . 5 . 3302–3307 . 10.1021/acs.inorgchem.8b03367 . 30762348 . 73438467.
- Aleksanyan . A.G . Aghajanyan . N.N . Dolukhanyan . S.K . Mnatsakanyan . N.L . Harutyunyan . Kh.S . Hayrapetyan . V.S . Thermal-radiation synthesis of zirconium hydridonitrides and carbohydrides . Journal of Alloys and Compounds . January 2002 . 330-332 . 559–563 . 10.1016/S0925-8388(01)01519-5 .
- Dolukhanyan . S. K. . Aleksanyan . A. G. . Shekhtman . V. Sh. . Hakobyan . H. G. . Mayilyan . D. G. . Aghadjanyan . N. N. . Abrahamyan . K. A. . Mnatsakanyan . N. L. . Ter-Galstyan . O. P. . Synthesis of transition metal hydrides and a new process for production of refractory metal alloys: An autoreview . International Journal of Self-Propagating High-Temperature Synthesis . 2 July 2010 . 19 . 2 . 85–93 . 10.3103/S1061386210020020. 137089432.
- Niewa. R.. Zherebtsov. D. A.. January 2002. Redetermination of the crystal structure of tetralithium mononitride monohydride, Li4NH. Zeitschrift für Kristallographie - New Crystal Structures. 217. JG. 317–318. 10.1524/ncrs.2002.217.jg.317. 2197-4578. free.
- Book: Hampton. Michael D.. https://books.google.com/books?id=4otqCQAAQBAJ&pg=PA360. 361. 10.1007/978-94-010-0558-6_35. Structural Peculiarities of Multicomponent Hydridonitrides on the Basis of Metals of IV–V Groups Produced by SHS Method. Hydrogen Materials Science and Chemistry of Metal Hydrides. Schur. Dmitry V.. Zaginaichenko. Svetlana Yu. Trefilov. V. I.. 2012-12-06. Springer Science & Business Media. 978-94-010-0558-6. en.
- Dolukhanyan. S. May 1995. Interaction of hafnium with hydrogen and nitrogen in the combustion regime. International Journal of Hydrogen Energy. en. 20. 5. 391–395. 10.1016/0360-3199(94)00059-9. 1995IJHE...20..391D.
- Dasenbrock-Gammon . Nathan . Snider . Elliot . McBride . Raymond . Pasan . Hiranya . Durkee . Dylan . Khalvashi-Sutter . Nugzari . Munasinghe . Sasanka . Dissanayake . Sachith E. . Lawler . Keith V. . Salamat . Ashkan . Dias . Ranga P. . 2023-03-09 . Evidence of near-ambient superconductivity in a N-doped lutetium hydride . Nature . en . 615 . 7951 . 244–250 . 10.1038/s41586-023-05742-0 . 36890373 . 2023Natur.615..244D . 257407449 . 0028-0836.
- Crane . Leah . 'Red matter' superconductor could transform electronics – if it works . New Scientist . 8 March 2023 . 257 . 3430 . 9 . 10.1016/S0262-4079(23)00455-4 . 257625692 .
- News: Chang . Kenneth . New Room-Temperature Superconductor Offers Tantalizing Possibilities . 9 March 2023 . The New York Times . 8 March 2023.
- Service . Robert F. . 'Revolutionary' blue crystal resurrects hope of room temperature superconductivity . Science . 8 March 2023 . 379 . 6636 . 10.1126/science.adh4968.
- Dasenbrock-Gammon . Nathan . Snider . Elliot . McBride . Raymond . Pasan . Hiranya . Durkee . Dylan . Khalvashi-Sutter . Nugzari . Munasinghe . Sasanka . Dissanayake . Sachith E. . Lawler . Keith V. . Salamat . Ashkan . Dias . Ranga P. . 9 March 2023 . Evidence of near-ambient superconductivity in a N-doped lutetium hydride . Nature . 615 . 7951 . 244–250 . 10.1038/s41586-023-05742-0 . 36890373 . 2023Natur.615..244D . 257407449 . www.nature.com.
- News: Woodward . Aylin . The Scientific Breakthrough That Could Make Batteries Last Longer . Wall Street Journal. 8 March 2023.
- Web site: 'Revolutionary' blue crystal resurrects hope of room temperature superconductivity . www.science.org.
- Web site: Margo Anderson . March 8, 2023 . Room-Temperature Superconductivity Claimed . . Institute of Electrical and Electronics Engineers.
- Web site: Wood . Charlie . Savitsky . Zack . 8 March 2023 . Room-Temperature Superconductor Discovery Meets With Resistance . 2023-03-14 . . Simons Foundation.
- Garisto . Dan . 2023-03-09 . Allegations of Scientific Misconduct Mount as Physicist Makes His Biggest Claim Yet . Physics . en . 16 . 40. 10.1103/Physics.16.40 . 2023PhyOJ..16...40G . 257615348 . free.
- Web site: Wilkins . Alex . 17 March 2023 . 'Red matter' superconductor may not be a wonder material after all . New Scientist . en-US.
- Ming . Xue . Zhang . Ying-Jie . Zhu . Xiyu . Li . Qing . He . Chengping . Liu . Yuecong . Huang . Tianheng . Liu . Gan . Zheng . Bo . Yang . Huan . Sun . Jian . Xi . Xiaoxiang . Wen . Hai-Hu . 2023-05-11 . Absence of near-ambient superconductivity in LuH2±xNy . Nature . 620 . 7972 . en . 72–77 . 10.1038/s41586-023-06162-w . 37168015 . 10396964 . 258638296 . 1476-4687.
- Ashcroft . N. W. . 1968-12-23 . Metallic Hydrogen: A High-Temperature Superconductor? . Physical Review Letters . 21 . 26 . 1748–1749 . 10.1103/PhysRevLett.21.1748. 1968PhRvL..21.1748A.
- Ashcroft . N. W. . 2004-05-06 . Hydrogen Dominant Metallic Alloys: High Temperature Superconductors? . Physical Review Letters . 92 . 18 . 187002 . 10.1103/PhysRevLett.92.187002. 15169525 . 2004PhRvL..92r7002A.
- Brice . Jean-Francois . Motte . Jean-Pierre . Courtois . Alain . Protas . Jean . Aubry . Jacques . Etude structurale de Ca2NH par diffraction des rayons X, diffraction des neutrons et résonance magnétique nucléaire du proton dans le solide . Journal of Solid State Chemistry. Structural study on Ca2NH by X-ray-diffraction, neutron-diffraction and proton nuclear magnetic-resonance in the solid . February 1976 . 17 . 1–2 . 135–142 . 10.1016/0022-4596(76)90213-9. 1976JSSCh..17..135B.
- Dickman . Matthew J. . Schwartz . Benjamin V. G. . Latturner . Susan E. . Low-Dimensional Nitridosilicates Grown from Ca/Li Flux: Void Metal Ca8In2SiN4 and Semiconductor Ca3SiN3H . Inorganic Chemistry . 27 July 2017 . 56 . 15 . 9361–9368 . 10.1021/acs.inorgchem.7b01532. 28749660.
- Cao . Yu . Kirsanova . Maria A. . Ochi . Masayuki . Al Maksoud . Walid . Zhu . Tong . Rai . Rohit . Gao . Shenghan . Tsumori . Tatsuya . Kobayashi . Shintaro . Kawaguchi . Shogo . Abou-Hamad . Edy . Kuroki . Kazuhiko . Tassel . Cédric . Abakumov . Artem M. . Kobayashi . Yoji . 2022-09-26 . Topochemical Synthesis of Ca 3 CrN 3 H Involving a Rotational Structural Transformation for Catalytic Ammonia Synthesis . Angewandte Chemie International Edition . en . 61 . 39 . e202209187 . 10.1002/anie.202209187 . 35929578 . 251349324 . 1433-7851. free.
- Bailey. Mark S.. Obrovac. Mark N.. Baillet. Emilie. Reynolds. Thomas K.. Zax. David B.. DiSalvo. Francis J.. September 2003. Ca 6 [Cr 2 N 6 ]H, the First Quaternary Nitride−Hydride. Inorganic Chemistry. en. 42. 18. 5572–5578. 10.1021/ic0343206. 12950205. 0020-1669.
- Sichla. Th.. Altorfer. F.. Hohlwein. D.. Reimann. K.. Steube. M.. Wrzesinski. J.. Jacobs. H.. 1997. Kristallstrukturbestimmung an einer Strontium-hydrid-imid-nitrid-Phase - Sr2(H)N/SrNH bzw. Sr2(D)N/SrND - mit Röntgen-, Neutronen- und Synchrotron-Strahlung. Zeitschrift für anorganische und allgemeine Chemie. de. 623. 1–6. 414–422. 10.1002/zaac.19976230166. 0044-2313.
- Blaschkowski . Björn . Schleid . Thomas . Darstellung und Kristallstruktur des Lithium-Strontium-Hydridnitrids LiSr2H2N . Zeitschrift für anorganische und allgemeine Chemie . November 2007 . 633 . 15 . 2644–2648 . 10.1002/zaac.200700315.
- ALTORFER. F. BUHRER. W. WINKLER. B. CODDENS. G. ESSMANN. R. JACOBS. H. May 1994. H−-jump diffusion in barium-nitride-hydride Ba2NH. Solid State Ionics. 70-71. 272–277. 10.1016/0167-2738(94)90322-0.
- Falb. Nathaniel W.. Neu. Jennifer N.. Besara. Tiglet. Whalen. Jeffrey B.. Singh. David J.. Siegrist. Theo. 2019-03-04. Ba 3 CrN 3 H: A New Nitride-Hydride with Trigonal Planar Cr 4+. Inorganic Chemistry. en. 58. 5. 3302–3307. 10.1021/acs.inorgchem.8b03367. 30762348. 73438467. 0020-1669.
- Siegrist . Theo . Singh . David J. . Whalen . Jeffrey B. . Besara . Tiglet . Neu . Jennifer N. . Falb . Nathaniel W. . 2019 . Ba3CrN3H: A New Nitride-Hydride with Trigonal Planar Cr4+ . Inorganic Chemistry . 58 . 5 . 3302–3307 . 10.26434/chemrxiv.7418429 . 30762348 . 239569566.
- Blaschkowski. Björn. Schleid. Thomas. August 2012. Mixed-Valent Europium in the Nitride Hydride LiEu2NH3. Zeitschrift für anorganische und allgemeine Chemie. en. 638. 10. 1592. 10.1002/zaac.201204051.
- 10.1038/d41586-023-00599-9. Hopes raised for room-temperature superconductivity, but doubts remain. Nature. 8 March 2023. Jin. ChangQing. Ceperly. David. 615. 7951. 221–222. 36890377. 2023Natur.615..221J . 257407330.
- Peterson . D.T . Nelson . S.O . Equilibrium hydrogen pressures in the Th-N-H system . Journal of the Less Common Metals . August 1981 . 80 . 2 . 221–226 . 10.1016/0022-5088(81)90095-3.