In linear algebra, a nilpotent matrix is a square matrix N such that
Nk=0
k
k
N
N
L
Lk=0
k
Lj=0
j\geqk
The matrix
A=\begin{bmatrix}0&1\\ 0&0\end{bmatrix}
A2=0
More generally, any
n
\len
B=\begin{bmatrix}0&2&1&6\\ 0&0&1&2\\ 0&0&0&3\\ 0&0&0&0\end{bmatrix}
B2=\begin{bmatrix}0&0&2&7\\ 0&0&0&3\\ 0&0&0&0\\ 0&0&0&0\end{bmatrix} ; B3=\begin{bmatrix}0&0&0&6\\ 0&0&0&0\\ 0&0&0&0\\ 0&0&0&0\end{bmatrix} ; B4=\begin{bmatrix}0&0&0&0\\ 0&0&0&0\\ 0&0&0&0\\ 0&0&0&0\end{bmatrix}
The index of
B
Although the examples above have a large number of zero entries, a typical nilpotent matrix does not. For example,
C=\begin{bmatrix}5&-3&2\\ 15&-9&6\\ 10&-6&4 \end{bmatrix} C2=\begin{bmatrix}0&0&0\\ 0&0&0\\ 0&0&0 \end{bmatrix}
Additionally, any matrices of the form
\begin{bmatrix} a1&a1& … &a1\\ a2&a2& … &a2\\ \vdots&\vdots&\ddots&\vdots\\ -a1-a2-\ldots-an-1&-a1-a2-\ldots-an-1&\ldots&-a1-a2-\ldots-an-1\end{bmatrix}
such as
\begin{bmatrix} 5&5&5\\ 6&6&6\\ -11&-11&-11 \end{bmatrix}
or
\begin{bmatrix} 1&1&1&1\\ 2&2&2&2\\ 4&4&4&4\\ -7&-7&-7&-7 \end{bmatrix}
square to zero.
Perhaps some of the most striking examples of nilpotent matrices are
n x n
\begin{bmatrix} 2&2&2& … &1-n\\ n+2&1&1& … &-n\\ 1&n+2&1& … &-n\\ 1&1&n+2& … &-n\\ \vdots&\vdots&\vdots&\ddots&\vdots \end{bmatrix}
The first few of which are:
\begin{bmatrix} 2&-1\\ 4&-2 \end{bmatrix} \begin{bmatrix} 2&2&-2\\ 5&1&-3\\ 1&5&-3 \end{bmatrix} \begin{bmatrix} 2&2&2&-3\\ 6&1&1&-4\\ 1&6&1&-4\\ 1&1&6&-4 \end{bmatrix} \begin{bmatrix} 2&2&2&2&-4\\ 7&1&1&1&-5\\ 1&7&1&1&-5\\ 1&1&7&1&-5\\ 1&1&1&7&-5 \end{bmatrix} \ldots
These matrices are nilpotent but there are no zero entries in any powers of them less than the index.[1]
Consider the linear space of polynomials of a bounded degree. The derivative operator is a linear map. We know that applying the derivative to a polynomial decreases its degree by one, so when applying it iteratively, we will eventually obtain zero. Therefore, on such a space, the derivative is representable by a nilpotent matrix.
For an
n x n
N
N
N
\det\left(xI-N\right)=xn
N
xk
k\leqn
N
This theorem has several consequences, including:
n x n
n
2 x 2
See also: Jordan–Chevalley decomposition#Nilpotency criterion.
Consider the
n x n
S=\begin{bmatrix}0&1&0&\ldots&0\\ 0&0&1&\ldots&0\\ \vdots&\vdots&\vdots&\ddots&\vdots\\ 0&0&0&\ldots&1\\ 0&0&0&\ldots&0 \end{bmatrix}.
S(x1,x2,\ldots,xn)=(x2,\ldots,xn,0).
n
Specifically, if
N
N
\begin{bmatrix}S1&0&\ldots&0\ 0&S2&\ldots&0\\ \vdots&\vdots&\ddots&\vdots\\ 0&0&\ldots&Sr\end{bmatrix}
S1,S2,\ldots,Sr
For example, any nonzero 2 × 2 nilpotent matrix is similar to the matrix
\begin{bmatrix}0&1\\ 0&0 \end{bmatrix}.
N
This classification theorem holds for matrices over any field. (It is not necessary for the field to be algebraically closed.)
A nilpotent transformation
L
Rn
\{0\}\subset\kerL\subset\kerL2\subset\ldots\subset\kerLq-1\subset\kerLq=Rn
0=n0<n1<n2<\ldots<nq-1<nq=n, ni=\dim\kerLi.
The signature characterizes
L
nj+1-nj\leqnj-nj-1, forallj=1,\ldots,q-1.
T
v
k\inN
Tk(v)=0.