Nest algebra explained

In functional analysis, a branch of mathematics, nest algebras are a class of operator algebras that generalise the upper-triangular matrix algebras to a Hilbert space context. They were introduced by and have many interesting properties. They are non-selfadjoint algebras, are closed in the weak operator topology and are reflexive.

Nest algebras are among the simplest examples of commutative subspace lattice algebras. Indeed, they are formally defined as the algebra of bounded operators leaving invariant each subspace contained in a subspace nest, that is, a set of subspaces which is totally ordered by inclusion and is also a complete lattice. Since the orthogonal projections corresponding to the subspaces in a nest commute, nests are commutative subspace lattices.

By way of an example, let us apply this definition to recover the finite-dimensional upper-triangular matrices. Let us work in the

n

-dimensional complex vector space

Cn

, and let

e1,e2,...,en

be the standard basis. For

j=0,1,2,...,n

, let

Sj

be the

j

-dimensional subspace of

Cn

spanned by the first

j

basis vectors

e1,...,ej

. Let

N=\{(0)=S0,S1,S2,...,Sn-1,

n
S
n=C

\};

then N is a subspace nest, and the corresponding nest algebra of n × n complex matrices M leaving each subspace in N invariant   that is, satisfying

MS\subseteqS

for each S in N  - is precisely the set of upper-triangular matrices.

If we omit one or more of the subspaces Sj from N then the corresponding nest algebra consists of block upper-triangular matrices.

Properties

See also