Neo-Hookean solid explained

A neo-Hookean solid[1] [2] is a hyperelastic material model, similar to Hooke's law, that can be used for predicting the nonlinear stress-strain behavior of materials undergoing large deformations. The model was proposed by Ronald Rivlin in 1948 using invariants, though Mooney had already described a version in stretch form in 1940, and Wall had noted the equivalence in shear with the Hooke model in 1942.

In contrast to linear elastic materials, the stress-strain curve of a neo-Hookean material is not linear. Instead, the relationship between applied stress and strain is initially linear, but at a certain point the stress-strain curve will plateau. The neo-Hookean model does not account for the dissipative release of energy as heat while straining the material, and perfect elasticity is assumed at all stages of deformation. In addition to being used to model physical materials, the stability and highly non-linear behaviour under compression has made neo-Hookean materials a popular choice for fictitious media approaches such as the third medium contact method.

The neo-Hookean model is based on the statistical thermodynamics of cross-linked polymer chains and is usable for plastics and rubber-like substances. Cross-linked polymers will act in a neo-Hookean manner because initially the polymer chains can move relative to each other when a stress is applied. However, at a certain point the polymer chains will be stretched to the maximum point that the covalent cross links will allow, and this will cause a dramatic increase in the elastic modulus of the material. The neo-Hookean material model does not predict that increase in modulus at large strains and is typically accurate only for strains less than 20%.[3] The model is also inadequate for biaxial states of stress and has been superseded by the Mooney-Rivlin model.

The strain energy density function for an incompressible neo-Hookean material in a three-dimensional description is

W=C1(I1-3)

where

C1

is a material constant, and

I1

is the first invariant (trace), of the right Cauchy-Green deformation tensor, i.e.,

I1=

2
λ
1

+

2
λ
2

+

2
λ
3
where

λi

are the principal stretches.[2]

For a compressible neo-Hookean material the strain energy density function is given by

W=C1~(I1-3-2lnJ)+D1~(J-1)2~;~~J=\det(\boldsymbol{F})=λ3

where

D1

is a material constant and

\boldsymbol{F}

is the deformation gradient. It can be shown that in 2D, the strain energy density function is

W=C1~(I1-2-2lnJ)+D1~(J-1)2

Several alternative formulations exist for compressible neo-Hookean materials, for example

W=C1~(\bar{I}1-3)+\left(

C1+
6
D1
4

\right)\left(J2+

1
J2

-2\right)

where

\bar{I}1=J-2/3I1

is the first invariant of the isochoric part

\bar\boldsymbol{C}=(\det\boldsymbol{C})-1/3\boldsymbol{C}=J-2/3\boldsymbol{C}

of the right Cauchy–Green deformation tensor.

For consistency with linear elasticity,

C1=

\mu
2

~;~~D1=

{λ
L

}{2}

where

{λ}L

is the first Lamé parameter and

\mu

is the shear modulus or the second Lamé parameter.[4] Alternative definitions of

C1

and

D1

are sometimes used, notably in commercial finite element analysis software such as Abaqus.[5]

Cauchy stress in terms of deformation tensors

Compressible neo-Hookean material

For a compressible Ogden neo-Hookean material the Cauchy stress is given by

\boldsymbol{\sigma}=J-1\boldsymbol{P}\boldsymbol{F}T=J-1

\partialW
\partial\boldsymbol{F
} \boldsymbol^T = J^ \left(2 C_1 (\boldsymbol - \boldsymbol^) + 2 D_1 (J - 1) J \boldsymbol^ \right) \boldsymbol^T where

\boldsymbol{P}

is the first Piola–Kirchhoff stress. By simplifying the right hand side we arrive at

\boldsymbol{\sigma}=2C1J-1\left(\boldsymbol{F}\boldsymbol{F}T-\boldsymbol{I}\right)+2D1(J-1)\boldsymbol{I}=2C1J-1\left(\boldsymbol{B}-\boldsymbol{I}\right)+2D1(J-1)\boldsymbol{I}

which for infinitesimal strains is equal to

4C1\boldsymbol{\varepsilon}+2D1\operatorname{tr}(\boldsymbol{\varepsilon})\boldsymbol{I}

Comparison with Hooke's law shows that

C1=\tfrac{\mu}{2}

and

D1=\tfrac{λL

}.

For a compressible Rivlin neo-Hookean material the Cauchy stress is given by

J~\boldsymbol{\sigma}=-p~\boldsymbol{I}+2C1\operatorname{dev}(\bar{\boldsymbol{B}}) =-p~\boldsymbol{I}+

2C1
J2/3

\operatorname{dev}(\boldsymbol{B})

where

\boldsymbol{B}

is the left Cauchy–Green deformation tensor, and

p:=-2D1~J(J-1)~;~ \operatorname{dev}(\bar{\boldsymbol{B}})=\bar{\boldsymbol{B}}-\tfrac{1}{3}\bar{I}1\boldsymbol{I}~;~~ \bar{\boldsymbol{B}}=J-2/3\boldsymbol{B}~.

For infinitesimal strains (

\boldsymbol{\varepsilon}

)

J1+\operatorname{tr}(\boldsymbol{\varepsilon})~;~~\boldsymbol{B}\boldsymbol{I}+2\boldsymbol{\varepsilon}

and the Cauchy stress can be expressed as

\boldsymbol{\sigma}4C1\left(\boldsymbol{\varepsilon}-\tfrac{1}{3}\operatorname{tr}(\boldsymbol{\varepsilon})\boldsymbol{I}\right)+2D1\operatorname{tr}(\boldsymbol{\varepsilon})\boldsymbol{I}

Comparison with Hooke's law shows that

\mu=2C1

and

\kappa=2D1

.

Incompressible neo-Hookean material

For an incompressible neo-Hookean material with

J=1

\boldsymbol{\sigma}=-p~\boldsymbol{I}+2C1\boldsymbol{B}

where

p

is an undetermined pressure.

Cauchy stress in terms of principal stretches

Compressible neo-Hookean material

For a compressible neo-Hookean hyperelastic material, the principal components of the Cauchy stress are given by

\sigmai=2C1J-5/3\left[

2
λ
i

-\cfrac{I1}{3}\right]+2D1(J-1)~;~~i=1,2,3

Therefore, the differences between the principal stresses are

\sigma11-\sigma33=

5/3
\cfrac{2C
1}{J
}(\lambda_1^2-\lambda_3^2) ~;~~ \sigma_ - \sigma_ = \cfrac(\lambda_2^2-\lambda_3^2)

Incompressible neo-Hookean material

In terms of the principal stretches, the Cauchy stress differences for an incompressible hyperelastic material are given by

\sigma11-\sigma33=λ1~\cfrac{\partial{W}}{\partialλ1}-λ3~\cfrac{\partial{W}}{\partialλ3}~;~~ \sigma22-\sigma33=λ2~\cfrac{\partial{W}}{\partialλ2}-λ3~\cfrac{\partial{W}}{\partialλ3}

For an incompressible neo-Hookean material,

W=C1(λ

2
1

+

2
λ
2

+

2
λ
3

-3)~;~~λ3=1

Therefore,

\cfrac{\partial{W}}{\partialλ1}=2C1~;~~ \cfrac{\partial{W}}{\partialλ2}=2C2~;~~ \cfrac{\partial{W}}{\partialλ3}=2C3

which gives

\sigma11-\sigma33=

2)C
2(λ
1

~;~~ \sigma22-\sigma33=

2)C
2(λ
1

Uniaxial extension

Compressible neo-Hookean material

For a compressible material undergoing uniaxial extension, the principal stretches are

λ1=λ~;~~λ2=λ3=\sqrt{\tfrac{J}{λ}}~;~~ I1=λ2+\tfrac{2J}{λ}

Hence, the true (Cauchy) stresses for a compressible neo-Hookean material are given by

\begin{align} \sigma11&=

5/3
\cfrac{4C
1}{3J
}\left(\lambda^2 - \tfrac\right) + 2D_1(J-1) \\ \sigma_ & = \sigma_ = \cfrac\left(\tfrac - \lambda^2\right) + 2D_1(J-1) \end The stress differences are given by

\sigma11-\sigma33=

5/3
\cfrac{2C
1}{J
}\left(\lambda^2 - \tfrac\right) ~;~~ \sigma_ - \sigma_ = 0 If the material is unconstrained we have

\sigma22=\sigma33=0

. Then

\sigma11=

5/3
\cfrac{2C
1}{J
}\left(\lambda^2 - \tfrac\right) Equating the two expressions for

\sigma11

gives a relation for

J

as a function of

λ

, i.e.,
5/3
\cfrac{4C
1}{3J
}\left(\lambda^2 - \tfrac\right) + 2D_1(J-1) = \cfrac\left(\lambda^2 - \tfrac\right) or

D1J8/3-D1J5/3+\tfrac{C1}{}J-

2}{3}
\tfrac{C

=0

The above equation can be solved numerically using a Newton–Raphson iterative root-finding procedure.

Incompressible neo-Hookean material

Under uniaxial extension,

λ1=λ

and

λ2=λ3=1/\sqrt{λ}

. Therefore,

\sigma11-\sigma33=

2
2C
1\left(λ

-\cfrac{1}{λ}\right)~;~~ \sigma22-\sigma33=0

Assuming no traction on the sides,

\sigma22=\sigma33=0

, so we can write

\sigma11=2C1\left(λ2-\cfrac{1}{λ}\right) =

2C
1\left(
3\varepsilon+
2
3\varepsilon
11
3
+\varepsilon
11
11
1+\varepsilon11

\right)

where

\varepsilon11=λ-1

is the engineering strain. This equation is often written in alternative notation as

T11=2C1\left(\alpha2-\cfrac{1}{\alpha}\right)

The equation above is for the true stress (ratio of the elongation force to deformed cross-section). For the engineering stress the equation is:

eng
\sigma
11

=2C1\left(λ-\cfrac{1}{λ2}\right)

For small deformations

\varepsilon\ll1

we will have:

\sigma11=6C1\varepsilon=3\mu\varepsilon

Thus, the equivalent Young's modulus of a neo-Hookean solid in uniaxial extension is

3\mu

, which is in concordance with linear elasticity (

E=2\mu(1+\nu)

with

\nu=0.5

for incompressibility).

Equibiaxial extension

Compressible neo-Hookean material

In the case of equibiaxial extension

λ1=λ2=λ~;~~λ3=\tfrac{J}{λ2}~;~~I1=2+\tfrac{J2}{λ4}

Therefore,

\begin{align} \sigma11&=

2}{J
2C
1\left[\cfrac{λ

5/3

} - \cfrac\left(2\lambda^2+\cfrac\right)\right] + 2D_1(J-1) \\ & = \sigma_ \\ \sigma_ & = 2C_1\left[\cfrac{J^{1/3}}{\lambda^4} - \cfrac{1}{3J}\left(2\lambda^2+\cfrac{J^2}{\lambda^4}\right)\right] + 2D_1(J-1) \end The stress differences are

\sigma11-\sigma22=0~;~~\sigma11-\sigma33=

5/3
\cfrac{2C
1}{J
}\left(\lambda^2 - \cfrac\right) If the material is in a state of plane stress then

\sigma33=0

and we have

\sigma11=\sigma22=

5/3
\cfrac{2C
1}{J
}\left(\lambda^2 - \cfrac\right) We also have a relation between

J

and

λ

:
2}{J
2C
1\left[\cfrac{λ

5/3

} - \cfrac\left(2\lambda^2+\cfrac\right)\right] + 2D_1(J-1) = \cfrac\left(\lambda^2 - \cfrac\right) or,

\left(2D1-

4}\right)J
\cfrac{C
1}{λ

2+

4}J
\cfrac{3C
1}{λ

4/3-3D1J-

2
2C

=0

This equation can be solved for

J

using Newton's method.

Incompressible neo-Hookean material

For an incompressible material

J=1

and the differences between the principal Cauchy stresses take the form

\sigma11-\sigma22=0~;~~\sigma11-\sigma33=

2
2C
1\left(λ

-\cfrac{1}{λ4}\right)

Under plane stress conditions we have

\sigma11=

2
2C
1\left(λ

-\cfrac{1}{λ4}\right)

Pure dilation

For the case of pure dilation

λ1=λ2=λ3=λ~:~~J=λ3~;~~I1=2

Therefore, the principal Cauchy stresses for a compressible neo-Hookean material are given by

\sigmai=

3}
2C
1\left(\cfrac{1}{λ

-\cfrac{1}{λ}\right)+

3-1)
2D
1(λ
If the material is incompressible then

λ3=1

and the principal stresses can be arbitrary.

The figures below show that extremely high stresses are needed to achieve large triaxial extensions or compressions. Equivalently, relatively small triaxial stretch states can cause very high stresses to develop in a rubber-like material. The magnitude of the stress is quite sensitive to the bulk modulus but not to the shear modulus.

Simple shear

For the case of simple shear the deformation gradient in terms of components with respect to a reference basis is of the form[2]

\boldsymbol{F}=\begin{bmatrix}1&\gamma&0\ 0&1&0\ 0&0&1\end{bmatrix}

where

\gamma

is the shear deformation. Therefore, the left Cauchy-Green deformation tensor is

\boldsymbol{B}=\boldsymbol{F}\boldsymbol{F}T=\begin{bmatrix}1+\gamma2&\gamma&0\\gamma&1&0\ 0&0&1\end{bmatrix}

Compressible neo-Hookean material

In this case

J=\det(\boldsymbol{F})=1

. Hence,

\boldsymbol{\sigma}=2C1\operatorname{dev}(\boldsymbol{B})

. Now,

\operatorname{dev}(\boldsymbol{B})=\boldsymbol{B}-\tfrac{1}{3}\operatorname{tr}(\boldsymbol{B})\boldsymbol{I} =\boldsymbol{B}-\tfrac{1}{3}(3+\gamma2)\boldsymbol{I}=\begin{bmatrix}\tfrac{2}{3}\gamma2&\gamma&0\\gamma&-\tfrac{1}{3}\gamma2&0\ 0&0&-\tfrac{1}{3}\gamma2\end{bmatrix}

Hence the Cauchy stress is given by

\boldsymbol{\sigma}=\begin{bmatrix}

2
\tfrac{4C
1}{3}\gamma

&2C1\gamma&0\ 2C1\gamma&

2
-\tfrac{2C
1}{3}\gamma

&0\ 0&0&

2
-\tfrac{2C
1}{3}\gamma

\end{bmatrix}

Incompressible neo-Hookean material

Using the relation for the Cauchy stress for an incompressible neo-Hookean material we get

\boldsymbol{\sigma}=-p~\boldsymbol{I}+2C1\boldsymbol{B}=\begin{bmatrix}

2)-p
2C
1(1+\gamma

&2C1\gamma&0\ 2C1\gamma&2C1-p&0\ 0&0&2C1-p\end{bmatrix}

Thus neo-Hookean solid shows linear dependence of shear stresses upon shear deformation and quadratic dependence of the normal stress difference on the shear deformation. The expressions for the Cauchy stress for a compressible and an incompressible neo-Hookean material in simple shear represent the same quantity and provide a means of determining the unknown pressure

p

.

References

  1. Treloar. L. R. G.. The elasticity of a network of long-chain molecules—II. Transactions of the Faraday Society. 1943. 39. 241–246. 10.1039/TF9433900241 .
  2. Book: Ogden, R. W.. [{{google books |plainurl=y |id=52XDAgAAQBAJ}} Non-Linear Elastic Deformations]. 26 April 2013. Courier Corporation. 978-0-486-31871-4.
  3. Gent, A. N., ed., 2001, Engineering with rubber, Carl Hanser Verlag, Munich.
  4. Pence, T. J., & Gou, K. (2015). On compressible versions of the incompressible neo-Hookean material. Mathematics and Mechanics of Solids, 20(2), 157–182. https://doi.org/10.1177/1081286514544258
  5. http://130.149.89.49:2080/v6.8/books/stm/default.htm?startat=ch04s06ath124.html Abaqus (Version 6.8) Theory Manual

See also