In combinatorial mathematics, the necklace polynomial, or Moreau's necklace-counting function, introduced by, counts the number of distinct necklaces of n colored beads chosen out of α available colors, arranged in a cycle. Unlike the usual problem of graph coloring, the necklaces are assumed to be aperiodic (not consisting of repeated subsequences), and counted up to rotation (rotating the beads around the necklace counts as the same necklace), but without flipping over (reversing the order of the beads counts as a different necklace). This counting function also describes the dimensions in a free Lie algebra and the number of irreducible polynomials over a finite field.
The necklace polynomials are a family of polynomials
M(\alpha,n)
\alpha
\alphan = \sumd|ndM(\alpha,d).
By Möbius inversion they are given by
M(\alpha,n) = {1\overn}\sumd|n\mu\left({n\overd}\right)\alphad,
\mu
A closely related family, called the general necklace polynomial or general necklace-counting function, is:
N(\alpha,n) = \sumd|nM(\alpha,d) =
1 | |
n |
\sumd|n\varphi\left({n\overd}\right)\alphad,
\varphi
The necklace polynomials
M(\alpha,n)
N(\alpha,n)
N(\alpha,n)
N(\alpha,n)
\alpha=pd
N(\alpha,n)
style{1\over1-\alphaz} =
infty\left({1 | |
\prod | |
j=1 |
\over1-zj}\right)
\alphan
x\inL
\{x,\sigmax,...,\sigman-1x\}
\sigmay=y\alpha
f:\{1,...,n\} → F
Different cyclic rearrangements of f, i.e. different representatives of the same necklace equivalence class, yield cyclic rearrangements of the factors offor\phi(T)=(T-y)(T-\sigmay) … (T-\sigman-1y)\inF[T]
.y=f(1)x+f(2)\sigmax+ … +f(n)\sigman-1x
\phi(T)
The polynomials for M and N are easily related in terms of Dirichlet convolution of arithmetic functions
f(n)*g(n)
\alpha
nM(n)=\mu(n)*\alphan
nN(n)=\varphi(n)*\alphan=n*\mu(n)*\alphan
N(n)=1*M(n)
nN(n)=n*(nM(n))
f(n)=n
Any two of these imply the third, for example:
n*\mu(n)*\alphan=nN(n)=n*(nM(n)) \Longrightarrow \mu(n)*\alphan =nM(n)
\begin{align} M(1,n)&=0ifn>1\\[6pt] M(\alpha,1)&=\alpha\\[6pt] M(\alpha,2)&=\tfrac12(\alpha2-\alpha)\\[6pt] M(\alpha,3)&=\tfrac13(\alpha3-\alpha)\\[6pt] M(\alpha,4)&=\tfrac14(\alpha4-\alpha2)\\[6pt] M(\alpha,5)&=\tfrac15(\alpha5-\alpha)\\[6pt] M(\alpha,6)&=\tfrac16(\alpha6-\alpha3-\alpha2+\alpha)\\[6pt] M(\alpha,p)&=\tfrac1p(\alphap-\alpha)&ifpisprime\\[6pt] M(\alpha,pN)&=\tfrac1{pN}(\alpha
pN | |
pN-1 | |
-\alpha |
)&ifpisprime \end{align}
For
\alpha=2
1, 2, 1, 2, 3, 6, 9, 18, 30, 56, 99, 186, 335, ...
See main article: Necklace ring. The polynomials obey various combinatorial identities, given by Metropolis & Rota:
M(\alpha\beta,n)=\sum\operatorname{lcm(i,j)=n}\gcd(i,j)M(\alpha,i)M(\beta,j),
M(\alpha\beta … \gamma,n)=\sum\operatorname{lcm(i,j,\ldots,k)=n}\gcd(i,j, … ,k)M(\alpha,i)M(\beta,j) … M(\gamma,k),
M(\betam,n)=\sum\operatorname{lcm(j,m)=nm}
j | |
n |
M(\beta,j).
. M. Lothaire . Perrin, D.; Reutenauer, C.; Berstel, J.; Pin, J. E.; Pirillo, G.; Foata, D.; Sakarovitch, J.; Simon, I.; Schützenberger, M. P.; Choffrut, C.; Cori, R.; Lyndon, Roger; Rota, Gian-Carlo. Foreword by Roger Lyndon . Combinatorics on words . 2nd . Encyclopedia of Mathematics and Its Applications . 17 . . 1997 . 978-0-521-59924-5 . 0874.20040 . 1475463 . 79,84 .