Nanoarchaeota Explained

Nanoarchaeota (Greek, "dwarf or tiny ancient one") is a proposed phylum (Candidatus Nanoarchaeota) in the domain Archaea[1] that currently has only one representative, Nanoarchaeum equitans, which was discovered in a submarine hydrothermal vent and first described in 2002.

Taxonomy

Members of the Nanoarchaeota are associated with different host organisms and environmental conditions.[2] Despite small size, a reduced genome and limited respiration, members of the Nanoarchaeota have unusual metabolic features. For example, N. equitans has a complex and highly developed intercellular communication system.[3]

The phylogeny of the Nanoarchaeota is anchored by its only cultured representative, Nanoarchaeum equitans, which clusters in a separate evolutionary group than other archaea,[4] [5] which have recently been reclassified. Further analysis has shown that N. equitans diverged early on in the evolution of Archaea, as indicated by the 16S rRNA sequence. This suggests that they occupy a deeply branching position within this group.[6]

The currently accepted taxonomy is based on the List of Prokaryotic names with Standing in Nomenclature (LPSN)[7] and the National Center for Biotechnology Information (NCBI).[8]

Characteristics

Cells of N. equitans are spherical with a diameter of approximately 400 nm,[9] and have a very short and compact DNA sequence with the entire genome containing only 490,885 base pairs. While they have the genetic code to carry out processing and repair, they cannot carry out certain biosynthetic and metabolic processes such as lipid, amino-acid, cofactor, or nucleotide synthesis. Due to its limited machinery, it is an obligate parasite, the only one known in the Archaea. Because of their unusual ss rRNA sequences, they are difficult to detect using standard polymerase chain reaction methods.[15] Cells of N. equitans contain a normal S-layer with sixfold symmetry with a 15 nm lattice constant.

Genome structure

Small cells between 100 and 400 nm in diameter and highly streamlined genomes of 0.491-0.606 Mbp characterize nanoarchaeotes.[16] The genomes of described nanoarchaeotes demonstrate different degrees of reduction, which is compatible with a host dependent lifestyle.[17] Certain nanaoarchaeotes still have genes for the CRISPR-Cas systems, archaeal flagella, and the gluconeogenesis pathway.[18]

Habitat

Nanoarchaeotes are obligate symbionts that grow attached to an archaeal host known as Ignicoccus. Both terrestrial hot springs and underwater hydrothermal vents have yielded isolates in the genus Nanoarchaeum . However, there is evidence that nanoarcheotes reside in a variety of habitats outside of marine thermal vents.  Genetic evidence for members of the Nanoarchaeota has been discovered to be pervasive in terrestrial hot springs and mesophilic hypersaline habitats using primers created based on the sequence of the 16S rRNA gene of Nanoarchaeum equitans. In addition, the discovery of ribosomal sequences in photic-zone water samples taken distant from hydrothermal vents raises the possibility that Nanoarchaeota are an ubiquitous and diversified group of Archaea that can live in habitats with a variety of temperatures and geochemical settings.

Metabolism

Although much of the metabolism of members of the Nanoarchaeota is unknown, its host is an autotroph that grows on elemental sulphur as an electron acceptor and H2 as an electron donor. The majority of recognized metabolic processes, such as the creation of monomers like amino acids, nucleotides, and coenzymes, lack recognizable genes in this organism.

See also

Further reading

Notes and References

  1. See the NCBI webpage on Nanoarchaeota. Data extracted from the Web site: NCBI taxonomy resources . . 2007-03-19.
  2. Munson-McGee . Jacob H. . Field . Erin K. . Bateson . Mary . Rooney . Colleen . Stepanauskas . Ramunas . Young . Mark J. . 2015-11-15 . Wommack . K. E. . Nanoarchaeota, Their Sulfolobales Host, and Nanoarchaeota Virus Distribution across Yellowstone National Park Hot Springs . Applied and Environmental Microbiology . en . 81 . 22 . 7860–7868 . 2015ApEnM..81.7860M . 10.1128/AEM.01539-15 . 0099-2240 . 4616950 . 26341207.
  3. Jarett . Jessica K. . Nayfach . Stephen . Podar . Mircea . Inskeep . William . Ivanova . Natalia N. . Munson-McGee . Jacob . Schulz . Frederik . Young . Mark . Jay . Zackary J. . Beam . Jacob P. . Kyrpides . Nikos C. . Malmstrom . Rex R. . Stepanauskas . Ramunas . Woyke . Tanja . 2018-09-17 . Single-cell genomics of co-sorted Nanoarchaeota suggests novel putative host associations and diversification of proteins involved in symbiosis . Microbiome . 6 . 1 . 161 . 10.1186/s40168-018-0539-8 . 2049-2618 . 6142677 . 30223889 . free .
  4. Castelle . Cindy J. . Banfield . Jillian F. . 2018 . Major New Microbial Groups Expand Diversity and Alter our Understanding of the Tree of Life . Cell . 172 . 6 . 1181–1197 . 10.1016/j.cell.2018.02.016 . 29522741 . 3801477 . 0092-8674. free .
  5. Waters . Elizabeth . Hohn . Michael J. . Ahel . Ivan . Graham . David E. . Adams . Mark D. . Barnstead . Mary . Beeson . Karen Y. . Bibbs . Lisa . Bolanos . Randall . Keller . Martin . Kretz . Keith . Lin . Xiaoying . Mathur . Eric . Ni . Jingwei . Podar . Mircea . 2003-10-28 . The genome of Nanoarchaeum equitans: Insights into early archaeal evolution and derived parasitism . Proceedings of the National Academy of Sciences . en . 100 . 22 . 12984–12988 . 2003PNAS..10012984W . 10.1073/pnas.1735403100 . 0027-8424 . 240731 . 14566062 . free.
  6. Book: http://doi.wiley.com/10.1002/9780470750865 . Archaea . 2006-12-08 . Blackwell Publishing Ltd . 978-0-470-75086-5 . Garrett . Roger A. . Malden, MA, USA . en . 10.1002/9780470750865 . Klenk . Hans-Peter .
  7. Web site: J.P. Euzéby . Phylum "Candidatus Nanoarchaeota" . 2021-11-17 . List of Prokaryotic names with Standing in Nomenclature (LPSN) .
  8. Web site: Sayers . etal. Nanoarchaeota . 2021-06-05 . National Center for Biotechnology Information (NCBI) taxonomy database.
  9. Huber . Harald . Hohn . Michael J. . Rachel . Reinhard . Fuchs . Tanja . Wimmer . Verena C. . Stetter . Karl O. . May 2002 . A new phylum of Archaea represented by a nanosized hyperthermophilic symbiont . Nature . en . 417 . 6884 . 63–67 . 10.1038/417063a . 11986665 . 2002Natur.417...63H . 4395094 . 1476-4687.
  10. St. John . Emily . Liu . Yitai . Podar . Mircea . Stott . Matthew B. . Meneghin . Jennifer . Chen . Zhiqiang . Lagutin . Kirill . Mitchell . Kevin . Reysenbach . Anna-Louise . 2019-01-01 . A new symbiotic nanoarchaeote (Candidatus Nanoclepta minutus) and its host (Zestosphaera tikiterensis gen. nov., sp. nov.) from a New Zealand hot spring . Systematic and Applied Microbiology . Taxonomy of uncultivated Bacteria and Archaea . en . 42 . 1 . 94–106 . 10.1016/j.syapm.2018.08.005 . 30195930 . 1470848 . 52178746 . 0723-2020. free .
  11. Wurch . Louie . Giannone . Richard J. . Belisle . Bernard S. . Swift . Carolyn . Utturkar . Sagar . Hettich . Robert L. . Reysenbach . Anna-Louise . Podar . Mircea . 2016-07-05 . Genomics-informed isolation and characterization of a symbiotic Nanoarchaeota system from a terrestrial geothermal environment . Nature Communications . en . 7 . 1 . 12115 . 10.1038/ncomms12115 . 2041-1723 . 4935971 . 27378076. 2016NatCo...712115W .
  12. Rinke . Christian . Chuvochina . Maria . Mussig . Aaron J. . Chaumeil . Pierre-Alain . Davin . Adrian A. . Waite . David W. . Whitman . William B. . Parks . Donovan H. . Hugenholtz . Philip . 2021-02-17 . Resolving widespread incomplete and uneven archaeal classifications based on a rank-normalized genome-based taxonomy . en . 946–959 . 10.1038/s41564-021-00918-8. 10.1101/2020.03.01.972265 . Nature Microbiology. 6 . 7 . 34155373 . 231984712 .
  13. Vázquez-Campos . Xabier . Kinsela . Andrew S. . Bligh . Mark W. . Payne . Timothy E. . Wilkins . Marc R. . Waite . T. David . 2021 . Genomic Insights Into the Archaea Inhabiting an Australian Radioactive Legacy Site . Frontiers in Microbiology . 12 . 732575 . 10.3389/fmicb.2021.732575 . 1664-302X . 8561730 . 34737728. free .
  14. Baker . Brett J. . Comolli . Luis R. . Dick . Gregory J. . Hauser . Loren J. . Hyatt . Doug . Dill . Brian D. . Land . Miriam L. . VerBerkmoes . Nathan C. . Hettich . Robert L. . Banfield . Jillian F. . 2010-05-11 . Enigmatic, ultrasmall, uncultivated Archaea . Proceedings of the National Academy of Sciences . en . 107 . 19 . 8806–8811 . 10.1073/pnas.0914470107 . 0027-8424 . 2889320 . 20421484. 2010PNAS..107.8806B . free .
  15. Huber . Harald . Hohn . Michael J. . Rachel . Reinhard . Fuchs . Tanja . Wimmer . Verena C. . Stetter . Karl O. . 2002-05-02 . A new phylum of Archaea represented by a nanosized hyperthermophilic symbiont . Nature . en . 417 . 6884 . 63–67 . 10.1038/417063a . 11986665 . 2002Natur.417...63H . 4395094 . 0028-0836.
  16. Web site: Nanoarchaeota - an overview ScienceDirect Topics . 2023-04-08 . www.sciencedirect.com.
  17. Web site: Nanoarchaeota - an overview ScienceDirect Topics . 2023-04-08 . www.sciencedirect.com.
  18. Web site: Nanoarchaeota - an overview ScienceDirect Topics . 2023-04-08 . www.sciencedirect.com.