This is a list of some vector calculus formulae for working with common curvilinear coordinate systems.
\theta\in[0,\pi]
\varphi\in[0,2\pi]
From | ||||||||||
Cartesian | Cylindrical | Spherical | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
To | Cartesian | \begin{align} x&=x\\ y&=y\\ z&=z\\ \end{align} | \begin{align} x&=\rho\cos\varphi\\ y&=\rho\sin\varphi\\ z&=z \end{align} | \begin{align} x&=r\sin\theta\cos\varphi\\ y&=r\sin\theta\sin\varphi\\ z&=r\cos\theta\\ \end{align} | ||||||
Cylindrical | \begin{align} \rho&=\sqrt{x2+y2}\\ \varphi&=\arctan\left(
\right)\\ z&=z \end{align} | \begin{align} \rho&=\rho\\ \varphi&=\varphi\\ z&=z\\ \end{align} | \begin{align} \rho&=r\sin\theta\\ \varphi&=\varphi\\ z&=r\cos\theta \end{align} | |||||||
Spherical | \begin{align} r&=\sqrt{x2+y2+z2}\\ \theta&=\arctan\left(
| \begin{align} r&=\sqrt{\rho2+z2}\\ \theta&=\arctan{\left(
\right)}\\ \varphi&=\varphi \end{align} | \begin{align} r&=r\\\theta&=\theta\\\varphi&=\varphi \end{align} |
\arctan\left( | A |
B |
\right)
Cartesian | Cylindrical | Spherical | |||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cartesian | \begin{align} \hat{x}&=\hat{x}\\ \hat{y}&=\hat{y}\\ \hat{z}&=\hat{z}\\ \end{align} | \begin{align} \hat{x}&=\cos\varphi\hat{\boldsymbol\rho}-\sin\varphi\hat{\boldsymbol\varphi}\\ \hat{y}&=\sin\varphi\hat{\boldsymbol\rho}+\cos\varphi\hat{\boldsymbol\varphi}\\ \hat{z}&=\hat{z} \end{align} | \begin{align} \hat{x}&=\sin\theta\cos\varphi\hat{r}+\cos\theta\cos\varphi\hat{\boldsymbol\theta}-\sin\varphi\hat{\boldsymbol\varphi}\\ \hat{y}&=\sin\theta\sin\varphi\hat{r}+\cos\theta\sin\varphi\hat{\boldsymbol\theta}+\cos\varphi\hat{\boldsymbol\varphi}\\ \hat{z}&=\cos\theta\hat{r}-\sin\theta\hat{\boldsymbol\theta} \end{align} | ||||||||||||||||
Cylindrical | \begin{align} \hat{\boldsymbol\rho}&=
y\hat{y}}{\sqrt{x2+y2}}\\ \hat{\boldsymbol\varphi}&=
x\hat{y}}{\sqrt{x2+y2}}\\ \hat{z}&=\hat{z} \end{align} | \begin{align} \hat{\boldsymbol\rho}&=\hat{\boldsymbol\rho}\\ \hat{\boldsymbol\varphi}&=\hat{\boldsymbol\varphi}\\ \hat{z}&=\hat{z}\\ \end{align} | \begin{align} \hat{\boldsymbol\rho}&=\sin\theta\hat{r}+\cos\theta\hat{\boldsymbol\theta}\\ \hat{\boldsymbol\varphi}&=\hat{\boldsymbol\varphi}\\ \hat{z}&=\cos\theta\hat{r}-\sin\theta\hat{\boldsymbol\theta} \end{align} | ||||||||||||||||
Spherical | \begin{align} \hat{r}&=
y\hat{y}+z\hat{z}}{\sqrt{x2+y2+z2}}\\ \hat{\boldsymbol\theta}&=
y\hat{y}\right)z-\left(x2+y2\right)\hat{z}}{\sqrt{x2+y2+z2}\sqrt{x2+y2}}\\ \hat{\boldsymbol\varphi}&=
x\hat{y}}{\sqrt{x2+y2}} \end{align} | \begin{align} \hat{r}&=
z\hat{z}}{\sqrt{\rho2+z2}}\\ \hat{\boldsymbol\theta}&=
\rho\hat{z}}{\sqrt{\rho2+z2}}\\ \hat{\boldsymbol\varphi}&=\hat{\boldsymbol\varphi} \end{align} | \begin{align} \hat{r}&=\hat{r}\\ \hat{\boldsymbol\theta}&=\hat{\boldsymbol\theta}\\ \hat{\boldsymbol\varphi}&=\hat{\boldsymbol\varphi}\\ \end{align} |
Cartesian | Cylindrical | Spherical | ||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cartesian | \begin{align} \hat{x}&=\hat{x}\\ \hat{y}&=\hat{y}\\ \hat{z}&=\hat{z}\\ \end{align} | \begin{align} \hat{x}&=
y\hat{\boldsymbol\varphi}}{\sqrt{x2+y2}}\\ \hat{y}&=
x\hat{\boldsymbol\varphi}}{\sqrt{x2+y2}}\\ \hat{z}&=\hat{z} \end{align} | \begin{align} \hat{x}&=
z\hat{\boldsymbol\theta}\right)-y\sqrt{x2+y2+z2}\hat{\boldsymbol\varphi}}{\sqrt{x2+y2}\sqrt{x2+y2+z2}}\\ \hat{y}&=
z\hat{\boldsymbol\theta}\right)+x\sqrt{x2+y2+z2}\hat{\boldsymbol\varphi}}{\sqrt{x2+y2}\sqrt{x2+y2+z2}}\\ \hat{z}&=
\sqrt{x2+y2}\hat{\boldsymbol\theta}}{\sqrt{x2+y2+z2}} \end{align} | |||||||||||||||
Cylindrical | \begin{align} \hat{\boldsymbol\rho}&=\cos\varphi\hat{x}+\sin\varphi\hat{y}\\ \hat{\boldsymbol\varphi}&=-\sin\varphi\hat{x}+\cos\varphi\hat{y}\\ \hat{z}&=\hat{z} \end{align} | \begin{align} \hat{\boldsymbol\rho}&=\hat{\boldsymbol\rho}\\ \hat{\boldsymbol\varphi}&=\hat{\boldsymbol\varphi}\\ \hat{z}&=\hat{z}\\ \end{align} | \begin{align} \hat{\boldsymbol\rho}&=
z\hat{\boldsymbol\theta}}{\sqrt{\rho2+z2}}\\ \hat{\boldsymbol\varphi}&=\hat{\boldsymbol\varphi}\\ \hat{z}&=
\rho\hat{\boldsymbol\theta}}{\sqrt{\rho2+z2}} \end{align} | |||||||||||||||
Spherical | \begin{align} \hat{r}&=\sin\theta\left(\cos\varphi\hat{x}+\sin\varphi\hat{y}\right)+\cos\theta\hat{z}\\ \hat{\boldsymbol\theta}&=\cos\theta\left(\cos\varphi\hat{x}+\sin\varphi\hat{y}\right)-\sin\theta\hat{z}\\ \hat{\boldsymbol\varphi}&=-\sin\varphi\hat{x}+\cos\varphi\hat{y} \end{align} | \begin{align} \hat{r}&=\sin\theta\hat{\boldsymbol\rho}+\cos\theta\hat{z}\\ \hat{\boldsymbol\theta}&=\cos\theta\hat{\boldsymbol\rho}-\sin\theta\hat{z}\\ \hat{\boldsymbol\varphi}&=\hat{\boldsymbol\varphi} \end{align} | \begin{align} \hat{r}&=\hat{r}\\ \hat{\boldsymbol\theta}&=\hat{\boldsymbol\theta}\\ \hat{\boldsymbol\varphi}&=\hat{\boldsymbol\varphi}\\ \end{align} |
Operation | Spherical coordinates, where is the polar angle and is the azimuthal angle | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Vector field | Ax\hat{x}+Ay\hat{y}+Az\hat{z} | A\rho\hat{\boldsymbol\rho}+A\varphi\hat{\boldsymbol\varphi}+Az\hat{z} | Ar\hat{r}+A\theta\hat{\boldsymbol\theta}+A\varphi\hat{\boldsymbol\varphi} | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Gradient | {\partialf\over\partialx}\hat{x}+{\partialf\over\partialy}\hat{y} +{\partialf\over\partialz}\hat{z} | {\partialf\over\partial\rho}\hat{\boldsymbol\rho} +{1\over\rho}{\partialf\over\partial\varphi}\hat{\boldsymbol\varphi} +{\partialf\over\partialz}\hat{z} | {\partialf\over\partialr}\hat{r} +{1\overr}{\partialf\over\partial\theta}\hat{\boldsymbol\theta} +{1\overr\sin\theta}{\partialf\over\partial\varphi}\hat{\boldsymbol\varphi} | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Divergence | {\partialAx\over\partialx}+{\partialAy\over\partialy}+{\partialAz\over\partialz} | {1\over\rho}{\partial\left(\rhoA\rho\right)\over\partial\rho} +{1\over\rho}{\partialA\varphi\over\partial\varphi} +{\partialAz\over\partialz} | {1\overr2}{\partial\left(r2Ar\right)\over\partialr} +{1\overr\sin\theta}{\partial\over\partial\theta}\left(A\theta\sin\theta\right) +{1\overr\sin\theta}{\partialA\varphi\over\partial\varphi} | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Curl | \begin{align} \left(
-
\right)&\hat{x}\\ +\left(
-
\right)&\hat{y}\\ +\left(
-
\right)&\hat{z} \end{align} | \begin{align} \left(
-
\right)&\hat{\boldsymbol\rho}\\ +\left(
-
\right)&\hat{\boldsymbol\varphi}\\ +
\left(
-
\right)&\hat{z} \end{align} | \begin{align}
\left(
\left(A\varphi\sin\theta\right) -
\right)&\hat{r}\\ {}+
\left(
-
\left(rA\varphi\right) \right)&\hat{\boldsymbol\theta}\\ {}+
\left(
\left(rA\theta\right) -
\right)&\hat{\boldsymbol\varphi} \end{align} | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Laplace operator | {\partial2f\over\partialx2}+{\partial2f\over\partialy2}+{\partial2f\over\partialz2} | {1\over\rho}{\partial\over\partial\rho}\left(\rho{\partialf\over\partial\rho}\right) +{1\over\rho2}{\partial2f\over\partial\varphi2} +{\partial2f\over\partialz2} | {1\overr2}{\partial\over\partialr}\left(r2{\partialf\over\partialr}\right) \ | +\!\ | \left(\sin\theta \right)\!+\ | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Vector gradient |
\hat{x} ⊗ \hat{x}+
\hat{x} ⊗ \hat{y}+
\hat{x} ⊗ \hat{z}\ {}+&
\hat{y} ⊗ \hat{x}+
\hat{y} ⊗ \hat{y}+
\hat{y} ⊗ \hat{z}\ {}+&
\hat{z} ⊗ \hat{x}+
\hat{z} ⊗ \hat{y}+
\hat{z} ⊗ \hat{z}\end{align} |
\hat{\boldsymbol\rho} ⊗ \hat{\boldsymbol\rho}+\left(
\right)\hat{\boldsymbol\rho} ⊗ \hat{\boldsymbol\varphi}+
\hat{\boldsymbol\rho} ⊗ \hat{z}\ {}+&
\hat{\boldsymbol\varphi} ⊗ \hat{\boldsymbol\rho}+\left(
\right)\hat{\boldsymbol\varphi} ⊗ \hat{\boldsymbol\varphi}+
\hat{\boldsymbol\varphi} ⊗ \hat{z}\ {}+&
\hat{z} ⊗ \hat{\boldsymbol\rho}+
\hat{z} ⊗ \hat{\boldsymbol\varphi}+
\hat{z} ⊗ \hat{z}\end{align} |
\hat{r} ⊗ \hat{r}+\left(
\right)\hat{r} ⊗ \hat{\boldsymbol\theta}+\left(
-
\right)\hat{r} ⊗ \hat{\boldsymbol\varphi}\ {}+&
\hat{\boldsymbol\theta} ⊗ \hat{r}+\left(
\right)\hat{\boldsymbol\theta} ⊗ \hat{\boldsymbol\theta}+\left(
-\cot\theta
\right)\hat{\boldsymbol\theta} ⊗ \hat{\boldsymbol\varphi}\ {}+&
\hat{\boldsymbol\varphi} ⊗ \hat{r}+
\hat{\boldsymbol\varphi} ⊗ \hat{\boldsymbol\theta}+\left(
+\cot\theta
+
\right)\hat{\boldsymbol\varphi} ⊗ \hat{\boldsymbol\varphi}\end{align} | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Vector Laplacian [1] | \nabla2Ax\hat{x}+\nabla2Ay\hat{y}+\nabla2Az\hat{z} | \begin{align} en{}\left(\nabla2A\rho-
-
\right)ose{}&\hat{\boldsymbol\rho}\\ +en{}\left(\nabla2A\varphi-
+
\right)ose{}&\hat{\boldsymbol\varphi}\\ {}+\nabla2Az&\hat{z} \end{align} | \begin{align} \left(\nabla2Ar-
-
-
| |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Directional derivative [2] | A ⋅ \nablaBx\hat{x}+A ⋅ \nablaBy\hat{y}+A ⋅ \nablaBz\hat{z | \begin{align} \left(A\rho
\right) &\hat{\boldsymbol\rho}\\ +\left(A\rho
+
+
+
\right) &\hat{\boldsymbol\varphi}\\ +\left(A\rho
\right) &\hat{z} \end{align} | \begin{align} \left(Ar
+
+
-
\right)&\hat{r}\\ +\left(Ar
+
+
+
-
\right)&\hat{\boldsymbol\theta}\\ +\left(Ar
+
+
+
+
\right)&\hat{\boldsymbol\varphi} \end{align} | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Tensor divergence |
\right)&\hat{z} \end{align} |
-T\varphi\varphi)\right]&\hat{\boldsymbol\rho}\\ +\left[
+T\varphi\rho)\right]&\hat{\boldsymbol\varphi}\\ +\left[
|
\theta+
+T\varphi\varphi)\right]&\hat{r}\\ +\left[
\theta\theta+
\varphi\varphi\right]&\hat{\boldsymbol\theta}\\ +\left[
(T\theta\varphi+T\varphi\theta)\right]&\hat{\boldsymbol\varphi} \end{align} | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Differential displacement | dx\hat{x}+dy\hat{y}+dz\hat{z} | d\rho\hat{\boldsymbol\rho}+\rhod\varphi\hat{\boldsymbol\varphi}+dz\hat{z} | dr\hat{r}+rd\theta\hat{\boldsymbol\theta}+r\sin\thetad\varphi\hat{\boldsymbol\varphi} | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Differential normal area | \begin{align} dydz&\hat{x}\\ {}+dxdz&\hat{y}\\ {}+dxdy&\hat{z} \end{align} | \begin{align} \rhod\varphidz&\hat{\boldsymbol\rho}\\ {}+d\rhodz&\hat{\boldsymbol\varphi}\\ {}+\rhod\rhod\varphi&\hat{z} \end{align} | \begin{align} r2\sin\thetad\thetad\varphi&\hat{r}\\ {}+r\sin\thetadrd\varphi&\hat{\boldsymbol\theta}\\ {}+rdrd\theta&\hat{\boldsymbol\varphi} \end{align} | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Differential volume | dxdydz | \rhod\rhod\varphidz | r2\sin\thetadrd\thetad\varphi |
This page uses
\theta
\varphi
\theta
\varphi
\theta
\varphi
Defined in Cartesian coordinates as
\partialiA ⊗ ei
ei ⊗ \partialiA
Defined in Cartesian coordinates as
ei ⋅ \partialiT
\partialiT ⋅ ei
\operatorname{div}\operatorname{grad}f\equiv\nabla ⋅ \nablaf\equiv\nabla2f
\operatorname{curl}\operatorname{grad}f\equiv\nabla x \nablaf=0
\operatorname{div}\operatorname{curl}A\equiv\nabla ⋅ (\nabla x A)=0
\operatorname{curl}\operatorname{curl}A\equiv\nabla x (\nabla x A)=\nabla(\nabla ⋅ A)-\nabla2A
\nabla2(fg)=f\nabla2g+2\nablaf ⋅ \nablag+g\nabla2f
\nabla2\left(P ⋅ Q\right)=Q ⋅ \nabla2P-P ⋅ \nabla2Q+2\nabla ⋅ \left[\left(P ⋅ \nabla\right)Q+P x \nabla x Q\right]
&= \frac \\
&= \frac + \frac + \frac\end
The expressions for
(\operatorname{curl}A)y
(\operatorname{curl}A)z
The unit vector of a coordinate parameter u is defined in such a way that a small positive change in u causes the position vector
r
u
Therefore, where is the arc length parameter.
For two sets of coordinate systems
ui
vj
Now, we isolate the
i
i{ ≠ }k
duk=0
dui