Del in cylindrical and spherical coordinates explained

This is a list of some vector calculus formulae for working with common curvilinear coordinate systems.

Notes

\theta\in[0,\pi]

: it is the angle between the z-axis and the radial vector connecting the origin to the point in question.

\varphi\in[0,2\pi]

: it is the angle between the x-axis and the projection of the radial vector onto the xy-plane.

Coordinate conversions

! colspan="3"
From
CartesianCylindricalSpherical
ToCartesian

\begin{align} x&=x\\ y&=y\\ z&=z\\ \end{align}

\begin{align} x&=\rho\cos\varphi\\ y&=\rho\sin\varphi\\ z&=z \end{align}

\begin{align} x&=r\sin\theta\cos\varphi\\ y&=r\sin\theta\sin\varphi\\ z&=r\cos\theta\\ \end{align}

Cylindrical

\begin{align} \rho&=\sqrt{x2+y2}\\ \varphi&=\arctan\left(

y
x

\right)\\ z&=z \end{align}

\begin{align} \rho&=\rho\\ \varphi&=\varphi\\ z&=z\\ \end{align}

\begin{align} \rho&=r\sin\theta\\ \varphi&=\varphi\\ z&=r\cos\theta \end{align}

Spherical

\begin{align} r&=\sqrt{x2+y2+z2}\\ \theta&=\arctan\left(

\sqrt{x2+y2
}\right) \\ \varphi &= \arctan\left(\frac\right)\end

\begin{align} r&=\sqrt{\rho2+z2}\\ \theta&=\arctan{\left(

\rho
z

\right)}\\ \varphi&=\varphi \end{align}

\begin{align} r&=r\\\theta&=\theta\\\varphi&=\varphi \end{align}

Note that the operation
\arctan\left(A
B

\right)

must be interpreted as the two-argument inverse tangent, atan2.

Unit vector conversions

Conversion between unit vectors in Cartesian, cylindrical, and spherical coordinate systems in terms of destination coordinates
CartesianCylindricalSpherical
Cartesian

\begin{align} \hat{x}&=\hat{x}\\ \hat{y}&=\hat{y}\\ \hat{z}&=\hat{z}\\ \end{align}

\begin{align} \hat{x}&=\cos\varphi\hat{\boldsymbol\rho}-\sin\varphi\hat{\boldsymbol\varphi}\\ \hat{y}&=\sin\varphi\hat{\boldsymbol\rho}+\cos\varphi\hat{\boldsymbol\varphi}\\ \hat{z}&=\hat{z} \end{align}

\begin{align} \hat{x}&=\sin\theta\cos\varphi\hat{r}+\cos\theta\cos\varphi\hat{\boldsymbol\theta}-\sin\varphi\hat{\boldsymbol\varphi}\\ \hat{y}&=\sin\theta\sin\varphi\hat{r}+\cos\theta\sin\varphi\hat{\boldsymbol\theta}+\cos\varphi\hat{\boldsymbol\varphi}\\ \hat{z}&=\cos\theta\hat{r}-\sin\theta\hat{\boldsymbol\theta} \end{align}

Cylindrical

\begin{align} \hat{\boldsymbol\rho}&=

x\hat{x
+

y\hat{y}}{\sqrt{x2+y2}}\\ \hat{\boldsymbol\varphi}&=

-y\hat{x
+

x\hat{y}}{\sqrt{x2+y2}}\\ \hat{z}&=\hat{z} \end{align}

\begin{align} \hat{\boldsymbol\rho}&=\hat{\boldsymbol\rho}\\ \hat{\boldsymbol\varphi}&=\hat{\boldsymbol\varphi}\\ \hat{z}&=\hat{z}\\ \end{align}

\begin{align} \hat{\boldsymbol\rho}&=\sin\theta\hat{r}+\cos\theta\hat{\boldsymbol\theta}\\ \hat{\boldsymbol\varphi}&=\hat{\boldsymbol\varphi}\\ \hat{z}&=\cos\theta\hat{r}-\sin\theta\hat{\boldsymbol\theta} \end{align}

Spherical

\begin{align} \hat{r}&=

x\hat{x
+

y\hat{y}+z\hat{z}}{\sqrt{x2+y2+z2}}\\ \hat{\boldsymbol\theta}&=

\left(x\hat{x
+

y\hat{y}\right)z-\left(x2+y2\right)\hat{z}}{\sqrt{x2+y2+z2}\sqrt{x2+y2}}\\ \hat{\boldsymbol\varphi}&=

-y\hat{x
+

x\hat{y}}{\sqrt{x2+y2}} \end{align}

\begin{align} \hat{r}&=

\rho\hat{\boldsymbol\rho
+

z\hat{z}}{\sqrt{\rho2+z2}}\\ \hat{\boldsymbol\theta}&=

z\hat{\boldsymbol\rho
-

\rho\hat{z}}{\sqrt{\rho2+z2}}\\ \hat{\boldsymbol\varphi}&=\hat{\boldsymbol\varphi} \end{align}

\begin{align} \hat{r}&=\hat{r}\\ \hat{\boldsymbol\theta}&=\hat{\boldsymbol\theta}\\ \hat{\boldsymbol\varphi}&=\hat{\boldsymbol\varphi}\\ \end{align}

Conversion between unit vectors in Cartesian, cylindrical, and spherical coordinate systems in terms of source coordinates
CartesianCylindricalSpherical
Cartesian

\begin{align} \hat{x}&=\hat{x}\\ \hat{y}&=\hat{y}\\ \hat{z}&=\hat{z}\\ \end{align}

\begin{align} \hat{x}&=

x\hat{\boldsymbol\rho
-

y\hat{\boldsymbol\varphi}}{\sqrt{x2+y2}}\\ \hat{y}&=

y\hat{\boldsymbol\rho
+

x\hat{\boldsymbol\varphi}}{\sqrt{x2+y2}}\\ \hat{z}&=\hat{z} \end{align}

\begin{align} \hat{x}&=

x\left(\sqrt{x2+y2
\hat{r}+

z\hat{\boldsymbol\theta}\right)-y\sqrt{x2+y2+z2}\hat{\boldsymbol\varphi}}{\sqrt{x2+y2}\sqrt{x2+y2+z2}}\\ \hat{y}&=

y\left(\sqrt{x2+y2
\hat{r}+

z\hat{\boldsymbol\theta}\right)+x\sqrt{x2+y2+z2}\hat{\boldsymbol\varphi}}{\sqrt{x2+y2}\sqrt{x2+y2+z2}}\\ \hat{z}&=

z\hat{r
-

\sqrt{x2+y2}\hat{\boldsymbol\theta}}{\sqrt{x2+y2+z2}} \end{align}

Cylindrical

\begin{align} \hat{\boldsymbol\rho}&=\cos\varphi\hat{x}+\sin\varphi\hat{y}\\ \hat{\boldsymbol\varphi}&=-\sin\varphi\hat{x}+\cos\varphi\hat{y}\\ \hat{z}&=\hat{z} \end{align}

\begin{align} \hat{\boldsymbol\rho}&=\hat{\boldsymbol\rho}\\ \hat{\boldsymbol\varphi}&=\hat{\boldsymbol\varphi}\\ \hat{z}&=\hat{z}\\ \end{align}

\begin{align} \hat{\boldsymbol\rho}&=

\rho\hat{r
+

z\hat{\boldsymbol\theta}}{\sqrt{\rho2+z2}}\\ \hat{\boldsymbol\varphi}&=\hat{\boldsymbol\varphi}\\ \hat{z}&=

z\hat{r
-

\rho\hat{\boldsymbol\theta}}{\sqrt{\rho2+z2}} \end{align}

Spherical

\begin{align} \hat{r}&=\sin\theta\left(\cos\varphi\hat{x}+\sin\varphi\hat{y}\right)+\cos\theta\hat{z}\\ \hat{\boldsymbol\theta}&=\cos\theta\left(\cos\varphi\hat{x}+\sin\varphi\hat{y}\right)-\sin\theta\hat{z}\\ \hat{\boldsymbol\varphi}&=-\sin\varphi\hat{x}+\cos\varphi\hat{y} \end{align}

\begin{align} \hat{r}&=\sin\theta\hat{\boldsymbol\rho}+\cos\theta\hat{z}\\ \hat{\boldsymbol\theta}&=\cos\theta\hat{\boldsymbol\rho}-\sin\theta\hat{z}\\ \hat{\boldsymbol\varphi}&=\hat{\boldsymbol\varphi} \end{align}

\begin{align} \hat{r}&=\hat{r}\\ \hat{\boldsymbol\theta}&=\hat{\boldsymbol\theta}\\ \hat{\boldsymbol\varphi}&=\hat{\boldsymbol\varphi}\\ \end{align}

Del formula

Table with the del operator in cartesian, cylindrical and spherical coordinates
OperationSpherical coordinates,
where is the polar angle and is the azimuthal angle
Vector field

Ax\hat{x}+Ay\hat{y}+Az\hat{z}

A\rho\hat{\boldsymbol\rho}+A\varphi\hat{\boldsymbol\varphi}+Az\hat{z}

Ar\hat{r}+A\theta\hat{\boldsymbol\theta}+A\varphi\hat{\boldsymbol\varphi}

Gradient

{\partialf\over\partialx}\hat{x}+{\partialf\over\partialy}\hat{y} +{\partialf\over\partialz}\hat{z}

{\partialf\over\partial\rho}\hat{\boldsymbol\rho} +{1\over\rho}{\partialf\over\partial\varphi}\hat{\boldsymbol\varphi} +{\partialf\over\partialz}\hat{z}

{\partialf\over\partialr}\hat{r} +{1\overr}{\partialf\over\partial\theta}\hat{\boldsymbol\theta} +{1\overr\sin\theta}{\partialf\over\partial\varphi}\hat{\boldsymbol\varphi}

Divergence

{\partialAx\over\partialx}+{\partialAy\over\partialy}+{\partialAz\over\partialz}

{1\over\rho}{\partial\left(\rhoA\rho\right)\over\partial\rho} +{1\over\rho}{\partialA\varphi\over\partial\varphi} +{\partialAz\over\partialz}

{1\overr2}{\partial\left(r2Ar\right)\over\partialr} +{1\overr\sin\theta}{\partial\over\partial\theta}\left(A\theta\sin\theta\right) +{1\overr\sin\theta}{\partialA\varphi\over\partial\varphi}

Curl

\begin{align} \left(

\partialAz
\partialy

-

\partialAy
\partialz

\right)&\hat{x}\\ +\left(

\partialAx
\partialz

-

\partialAz
\partialx

\right)&\hat{y}\\ +\left(

\partialAy
\partialx

-

\partialAx
\partialy

\right)&\hat{z} \end{align}

\begin{align} \left(

1
\rho
\partialAz
\partial\varphi

-

\partialA\varphi
\partialz

\right)&\hat{\boldsymbol\rho}\\ +\left(

\partialA\rho
\partialz

-

\partialAz
\partial\rho

\right)&\hat{\boldsymbol\varphi}\\ +

1
\rho

\left(

\partial\left(\rhoA\varphi\right)
\partial\rho

-

\partialA\rho
\partial\varphi

\right)&\hat{z} \end{align}

\begin{align}

1
r\sin\theta

\left(

\partial
\partial\theta

\left(A\varphi\sin\theta\right) -

\partialA\theta
\partial\varphi

\right)&\hat{r}\\ {}+

1
r

\left(

1
\sin\theta
\partialAr
\partial\varphi

-

\partial
\partialr

\left(rA\varphi\right) \right)&\hat{\boldsymbol\theta}\\ {}+

1
r

\left(

\partial
\partialr

\left(rA\theta\right) -

\partialAr
\partial\theta

\right)&\hat{\boldsymbol\varphi} \end{align}

Laplace operator

{\partial2f\over\partialx2}+{\partial2f\over\partialy2}+{\partial2f\over\partialz2}

{1\over\rho}{\partial\over\partial\rho}\left(\rho{\partialf\over\partial\rho}\right) +{1\over\rho2}{\partial2f\over\partial\varphi2} +{\partial2f\over\partialz2}

{1\overr2}{\partial\over\partialr}\left(r2{\partialf\over\partialr}\right) \

+\!\\left(\sin\theta \right)\!+\
Vector gradient
\begin{align}{}&\partialAx
\partialx

\hat{x}\hat{x}+

\partialAx
\partialy

\hat{x}\hat{y}+

\partialAx
\partialz

\hat{x}\hat{z}\{}+&

\partialAy
\partialx

\hat{y}\hat{x}+

\partialAy
\partialy

\hat{y}\hat{y}+

\partialAy
\partialz

\hat{y}\hat{z}\{}+&

\partialAz
\partialx

\hat{z}\hat{x}+

\partialAz
\partialy

\hat{z}\hat{y}+

\partialAz
\partialz

\hat{z}\hat{z}\end{align}

\begin{align}{}&\partialA\rho
\partial\rho

\hat{\boldsymbol\rho}\hat{\boldsymbol\rho}+\left(

1
\rho
\partialA\rho-
\partial\varphi
A\varphi
\rho

\right)\hat{\boldsymbol\rho}\hat{\boldsymbol\varphi}+

\partialA\rho
\partialz

\hat{\boldsymbol\rho}\hat{z}\{}+&

\partialA\varphi
\partial\rho

\hat{\boldsymbol\varphi}\hat{\boldsymbol\rho}+\left(

1
\rho
\partialA\varphi+
\partial\varphi
A\rho
\rho

\right)\hat{\boldsymbol\varphi}\hat{\boldsymbol\varphi}+

\partialA\varphi
\partialz

\hat{\boldsymbol\varphi}\hat{z}\{}+&

\partialAz
\partial\rho

\hat{z}\hat{\boldsymbol\rho}+

1
\rho
\partialAz
\partial\varphi

\hat{z}\hat{\boldsymbol\varphi}+

\partialAz
\partialz

\hat{z}\hat{z}\end{align}

\begin{align}{}&\partialAr
\partialr

\hat{r}\hat{r}+\left(

1
r
\partialAr-
\partial\theta
A\theta
r

\right)\hat{r}\hat{\boldsymbol\theta}+\left(

1
r\sin\theta
\partialAr
\partial\varphi

-

A\varphi
r

\right)\hat{r}\hat{\boldsymbol\varphi}\{}+&

\partialA\theta
\partialr

\hat{\boldsymbol\theta}\hat{r}+\left(

1
r
\partialA\theta+
\partial\theta
Ar
r

\right)\hat{\boldsymbol\theta}\hat{\boldsymbol\theta}+\left(

1
r\sin\theta
\partialA\theta
\partial\varphi

-\cot\theta

A\varphi
r

\right)\hat{\boldsymbol\theta}\hat{\boldsymbol\varphi}\{}+&

\partialA\varphi
\partialr

\hat{\boldsymbol\varphi}\hat{r}+

1
r
\partialA\varphi
\partial\theta

\hat{\boldsymbol\varphi}\hat{\boldsymbol\theta}+\left(

1
r\sin\theta
\partialA\varphi
\partial\varphi

+\cot\theta

A\theta
r

+

Ar
r

\right)\hat{\boldsymbol\varphi}\hat{\boldsymbol\varphi}\end{align}

Vector Laplacian [1]

\nabla2Ax\hat{x}+\nabla2Ay\hat{y}+\nabla2Az\hat{z}

\begin{align} en{}\left(\nabla2A\rho-

A\rho
\rho2

-

2
\rho2
\partialA\varphi
\partial\varphi

\right)ose{}&\hat{\boldsymbol\rho}\\ +en{}\left(\nabla2A\varphi-

A\varphi
\rho2

+

2
\rho2
\partialA\rho
\partial\varphi

\right)ose{}&\hat{\boldsymbol\varphi}\\ {}+\nabla2Az&\hat{z} \end{align}

\begin{align} \left(\nabla2Ar-

2Ar
r2

-

2
r2\sin\theta
\partial\left(A\theta\sin\theta\right)
\partial\theta

-

2{
r2\sin\theta
\partialA\varphi
\partial\varphi
}\right) &\hat \\+ \left(\nabla^2 A_\theta - \frac + \frac \frac - \frac \frac\right) &\hat \\+ \left(\nabla^2 A_\varphi - \frac + \frac \frac + \frac \frac\right) &\hat\end
Directional derivative [2]

A\nablaBx\hat{x}+A\nablaBy\hat{y}+A\nablaBz\hat{z

}

\begin{align} \left(A\rho

\partialB\rho+
\partial\rho
A\varphi
\rho
\partialB\rho
\partial\varphi
+A-
z\partialB\rho
\partialz
A\varphiB\varphi
\rho

\right) &\hat{\boldsymbol\rho}\\ +\left(A\rho

\partialB\varphi
\partial\rho

+

A\varphi
\rho
\partialB\varphi
\partial\varphi

+

A
z\partialB\varphi
\partialz

+

A\varphiB\rho
\rho

\right) &\hat{\boldsymbol\varphi}\\ +\left(A\rho

\partialBz+
\partial\rho
A\varphi
\rho
\partialBz
\partial\varphi
+A
z\partialBz
\partialz

\right) &\hat{z} \end{align}

\begin{align} \left(Ar

\partialBr
\partialr

+

A\theta
r
\partialBr
\partial\theta

+

A\varphi
r\sin\theta
\partialBr
\partial\varphi

-

A\thetaB\theta+A\varphiB\varphi
r

\right)&\hat{r}\\ +\left(Ar

\partialB\theta
\partialr

+

A\theta
r
\partialB\theta
\partial\theta

+

A\varphi
r\sin\theta
\partialB\theta
\partial\varphi

+

A\thetaBr
r

-

A\varphiB\varphi\cot\theta
r

\right)&\hat{\boldsymbol\theta}\\ +\left(Ar

\partialB\varphi
\partialr

+

A\theta
r
\partialB\varphi
\partial\theta

+

A\varphi
r\sin\theta
\partialB\varphi
\partial\varphi

+

A\varphiBr
r

+

A\varphiB\theta\cot\theta
r

\right)&\hat{\boldsymbol\varphi} \end{align}

Tensor divergence
\begin{align} \left(\partialTxx+
\partialx
\partialTyx+
\partialy
\partialTzx\right)&\hat{x}\\ +\left(
\partialz
\partialTxy+
\partialx
\partialTyy+
\partialy
\partialTzy\right)&\hat{y}\\ +\left(
\partialz
\partialTxz+
\partialx
\partialTyz+
\partialy
\partialTzz
\partialz

\right)&\hat{z} \end{align}

\begin{align} \left[\partialT\rho\rho+
\partial\rho
1\rho\partialT\varphi\rho
\partial\varphi
+
+\partialTz\rho
\partialz
1\rho(T
\rho\rho

-T\varphi\varphi)\right]&\hat{\boldsymbol\rho}\\ +\left[

\partialT\rho\varphi+
\partial\rho
1\rho\partialT\varphi\varphi
\partial\varphi
+
+\partialTz\varphi
\partialz
1\rho(T
\rho\varphi

+T\varphi\rho)\right]&\hat{\boldsymbol\varphi}\\ +\left[

\partialT\rho+
\partial\rho
1\rho\partialT\varphi
\partial\varphi
+
+\partialTzz
\partialz
T\rho
\rho\right]&\hat{z} \end{align}
\begin{align} \left[\partialTrr+2
\partialr
Trr
r+
1r\partialT\theta
\partial\theta
+\cot\theta
rT

\theta+

1{r\sin\theta}\partialT\varphi
\partial\varphi
-1r(T
\theta\theta

+T\varphi\varphi)\right]&\hat{r}\\ +\left[

\partialTr\theta+2
\partialr
Tr\theta
r+
1r\partialT\theta\theta
\partial\theta
+\cot\theta
rT

\theta\theta+

1{r\sin\theta}\partialT\varphi\theta
\partial\varphi
+T\theta
r-\cot\theta
rT

\varphi\varphi\right]&\hat{\boldsymbol\theta}\\ +\left[

\partialTr\varphi+2
\partialr
Tr\varphi+
r+
1r\partialT\theta\varphi
\partial\theta
+
1{r\sin\theta}\partialT\varphi\varphi
\partial\varphi
+T\varphi
r
\cot\theta
r

(T\theta\varphi+T\varphi\theta)\right]&\hat{\boldsymbol\varphi} \end{align}

Differential displacement

dx\hat{x}+dy\hat{y}+dz\hat{z}

d\rho\hat{\boldsymbol\rho}+\rhod\varphi\hat{\boldsymbol\varphi}+dz\hat{z}

dr\hat{r}+rd\theta\hat{\boldsymbol\theta}+r\sin\thetad\varphi\hat{\boldsymbol\varphi}

Differential normal area

\begin{align} dydz&\hat{x}\\ {}+dxdz&\hat{y}\\ {}+dxdy&\hat{z} \end{align}

\begin{align} \rhod\varphidz&\hat{\boldsymbol\rho}\\ {}+d\rhodz&\hat{\boldsymbol\varphi}\\ {}+\rhod\rhod\varphi&\hat{z} \end{align}

\begin{align} r2\sin\thetad\thetad\varphi&\hat{r}\\ {}+r\sin\thetadrd\varphi&\hat{\boldsymbol\theta}\\ {}+rdrd\theta&\hat{\boldsymbol\varphi} \end{align}

Differential volume

dxdydz

\rhod\rhod\varphidz

r2\sin\thetadrd\thetad\varphi

This page uses

\theta

for the polar angle and

\varphi

for the azimuthal angle, which is common notation in physics. The source that is used for these formulae uses

\theta

for the azimuthal angle and

\varphi

for the polar angle, which is common mathematical notation. In order to get the mathematics formulae, switch

\theta

and

\varphi

in the formulae shown in the table above.

Defined in Cartesian coordinates as

\partialiAei

. An alternative definition is

ei\partialiA

.

Defined in Cartesian coordinates as

ei\partialiT

. An alternative definition is

\partialiTei

.

Calculation rules

\operatorname{div}\operatorname{grad}f\equiv\nabla\nablaf\equiv\nabla2f

\operatorname{curl}\operatorname{grad}f\equiv\nabla x \nablaf=0

\operatorname{div}\operatorname{curl}A\equiv\nabla(\nabla x A)=0

\operatorname{curl}\operatorname{curl}A\equiv\nabla x (\nabla x A)=\nabla(\nablaA)-\nabla2A

(Lagrange's formula for del)

\nabla2(fg)=f\nabla2g+2\nablaf\nablag+g\nabla2f

\nabla2\left(PQ\right)=Q\nabla2P-P\nabla2Q+2\nabla\left[\left(P\nabla\right)Q+P x \nabla x Q\right]

(From [3])

Cartesian derivation

\begin\operatorname \mathbf A = \lim_ \frac

&= \frac \\

&= \frac + \frac + \frac\end

\begin(\operatorname \mathbf A)_x = \lim_ \frac&= \frac \\&= \frac - \frac\end

The expressions for

(\operatorname{curl}A)y

and

(\operatorname{curl}A)z

are found in the same way.

Cylindrical derivation

\begin\operatorname \mathbf A &= \lim_ \frac \\&= \frac \\&= \frac 1 \rho \frac + \frac 1 \rho \frac + \frac\end

\begin(\operatorname \mathbf A)_\rho&= \lim_ \frac \\[1ex]&= \frac \\[1ex]&= -\frac + \frac \frac\end

\begin(\operatorname \mathbf A)_\phi &= \lim_ \frac \\&= \frac \\&= -\frac + \frac\end

\begin(\operatorname \mathbf A)_z &= \lim_ \frac \\[1ex]&= \frac \\[1ex]&= -\frac\frac + \frac \frac\end

\begin\operatorname \mathbf A &= (\operatorname \mathbf A)_\rho \hat + (\operatorname \mathbf A)_\phi \hat + (\operatorname \mathbf A)_z \hat \\[1ex]&= \left(\frac \frac -\frac \right) \hat + \left(\frac-\frac \right) \hat + \frac\left(\frac - \frac \right) \hat\end

Spherical derivation

\begin\operatorname \mathbf A &= \lim_ \frac \\ &= \frac \\&= \frac\frac + \frac \frac + \frac \frac\end

\begin(\operatorname \mathbf A)_r = \lim_ \frac&= \frac \\&= \frac\frac - \frac \frac\end

\begin(\operatorname \mathbf A)_\theta = \lim_ \frac&= \frac \\&= \frac\frac - \frac \frac\end

\begin(\operatorname \mathbf A)_\phi = \lim_ \frac&= \frac \\&= \frac\frac - \frac \frac\end

\begin\operatorname \mathbf A&= (\operatorname \mathbf A)_r \, \hat + (\operatorname \mathbf A)_\theta \, \hat + (\operatorname \mathbf A)_\phi \, \hat \\[1ex]&= \frac \left(\frac-\frac \right) \hat +\frac \left(\frac\frac - \frac \right) \hat + \frac\left(\frac - \frac \right) \hat\end

Unit vector conversion formula

The unit vector of a coordinate parameter u is defined in such a way that a small positive change in u causes the position vector

r

to change in

u

direction.

Therefore, \frac = \frac \mathbf u where is the arc length parameter.

For two sets of coordinate systems

ui

and

vj

, according to chain rule, d\mathbf r = \sum_ \frac \, du_i = \sum_ \frac \hat_i du_i = \sum_ \frac \hat_j \, dv_j = \sum_\frac \hat_j \sum_ \frac \, du_i = \sum_ \sum_ \frac \frac \hat_j \, du_i.

Now, we isolate the

i

th component. For

i{}k

, let

duk=0

. Then divide on both sides by

dui

to get:\frac \hat_i = \sum_ \frac \frac \hat_j.

See also

External links

Notes and References

  1. Book: Arfken . George . Weber . Hans . Harris . Frank . Mathematical Methods for Physicists . 2012 . Academic Press . 9789381269558 . 192 . Seventh . arfkenweber.
  2. Web site: Convective Operator . Weisstein, Eric W. . Mathworld . 23 March 2011.
  3. Fernández-Guasti . M. . Green's Second Identity for Vector Fields . ISRN Mathematical Physics . Hindawi Limited . 2012 . 2012 . 2090-4681 . 10.5402/2012/973968 . 1–7. free .