In mathematics, the multiple zeta functions are generalizations of the Riemann zeta function, defined by
\zeta(s1,\ldots,sk)=
\sum | ||
n1>n2> … >nk>0 |
1 | |||||||||||||||
|
=
\sum | |
n1>n2> … >nk>0 |
k | |
\prod | |
i=1 |
1 | ||||||
|
,
and converge when Re(s1) + ... + Re(si) > i for all i. Like the Riemann zeta function, the multiple zeta functions can be analytically continued to be meromorphic functions (see, for example, Zhao (1999)). When s1, ..., sk are all positive integers (with s1 > 1) these sums are often called multiple zeta values (MZVs) or Euler sums. These values can also be regarded as special values of the multiple polylogarithms.[1] [2]
The k in the above definition is named the "depth" of a MZV, and the n = s1 + ... + sk is known as the "weight".[3]
The standard shorthand for writing multiple zeta functions is to place repeating strings of the argument within braces and use a superscript to indicate the number of repetitions. For example,
\zeta(2,1,2,1,3)=\zeta(\{2,1\}2,3).
Multiple zeta functions arise as special cases of the multiple polylogarithms
Li | |
s1,\ldots,sd |
(\mu1,\ldots,\mud)=
\sum\limits | |
k1> … >kd>0 |
| ||||||||||||||||
|
which are generalizations of the polylogarithm functions. When all of the
\mui
si
n
n=2
n=1
\zeta(s1,\ldots,sd)=
\sum\limits | |
k1> … >kd>0 |
1 | |||||||||||||||
|
and Euler sums are written
\zeta(s1,\ldots,sd;\varepsilon1,\ldots,\varepsilond)=
\sum\limits | |
k1> … >kd>0 |
| |||||||||||||||
|
where
\varepsiloni=\pm1
si
\varepsiloni
-1
\zeta(\overline{a},b)=\zeta(a,b;-1,1)
It was noticed by Kontsevich that it is possible to express colored multiple zeta values (and thus their special cases) as certain multivariable integrals. This result is often stated with the use of a convention for iterated integrals, wherein
x | |
\int | |
0 |
f1(t)dt … fd(t)dt=
x | |
\int | |
0 |
f1(t1)\left(\int
t1 | |
0 |
f2(t2)\left(\int
t2 | |
0 |
… \left(
td | |
\int | |
0 |
fd(td)dtd\right)\right)dt2\right)dt1
Using this convention, the result can be stated as follows:
Li | |
s1,\ldots,sd |
(\mu1,\ldots,\mud)=
1 | ||
\int | \left( | |
0 |
dt | |
t |
s1-1 | |
\right) |
dt | |
a1-t |
… \left(
dt | |
t |
sd-1 | |
\right) |
dt | |
ad-t |
aj=
j | |
\prod\limits | |
i=1 |
-1 | |
\mu | |
i |
j=1,2,\ldots,d
This result is extremely useful due to a well-known result regarding products of iterated integrals, namely that
x | |
\left(\int | |
0 |
f1(t)dt … fn(t)dt
x | |
\right)\left(\int | |
0 |
fn+1(t)dt … fm(t)dt\right)=\sum\limits\sigman,m
ak{Sh}n,m=\{\sigma\inSm\mid\sigma(1)< … <\sigma(n),\sigma(n+1)< … <\sigma(m)\}
Sm
m
To utilize this in the context of multiple zeta values, define
X=\{a,b\}
X*
X
ak{A}
\Q
X*
ak{A}
a=
dt | |
t |
b=
dt | |
1-t |
\zeta(w)=
1 | |
\int | |
0 |
w
w\inX*
which, by the aforementioned integral identity, makes
s1-1 | |
\zeta(a |
b …
sd-1 | |
a |
b)=\zeta(s1,\ldots,sd).
Then, the integral identity on products gives
\zeta(w)\zeta(v)=\zeta(w⧢v).
In the particular case of only two parameters we have (with s > 1 and n, m integers):[4]
\zeta(s,t)=\sumn
1 | |
nsmt |
=
infty | |
\sum | |
n=2 |
1 | |
ns |
n-1 | |
\sum | |
m=1 |
1 | |
mt |
=
infty | |
\sum | |
n=1 |
1 | |
(n+1)s |
n | |
\sum | |
m=1 |
1 | |
mt |
\zeta(s,t)=
infty | |
\sum | |
n=1 |
Hn,t | |
(n+1)s |
Hn,t
Multiple zeta functions are known to satisfy what is known as MZV duality, the simplest case of which is the famous identity of Euler:
infty | |
\sum | |
n=1 |
Hn | |
(n+1)2 |
=\zeta(2,1)=\zeta(3)=
infty | |
\sum | |
n=1 |
1 | |
n3 |
,
where Hn are the harmonic numbers.
Special values of double zeta functions, with s > 0 and even, t > 1 and odd, but s+t = 2N+1 (taking if necessary ζ(0) = 0):[4]
\zeta(s,t)=\zeta(s)\zeta(t)+\tfrac{1}{2}[\tbinom{s+t}{s}-1]\zeta(s+t)-
N-1 | |
\sum | |
r=1 |
[\tbinom{2r}{s-1}+\tbinom{2r}{t-1}]\zeta(2r+1)\zeta(s+t-1-2r)
s | t | approximate value | explicit formulae | OEIS | |
---|---|---|---|---|---|
2 | 2 | 0.811742425283353643637002772406 | \tfrac{3}{4}\zeta(4) | ||
3 | 2 | 0.228810397603353759768746148942 | 3\zeta(2)\zeta(3)-\tfrac{11}{2}\zeta(5) | ||
4 | 2 | 0.088483382454368714294327839086 | \left(\zeta(3)\right)2-\tfrac{4}{3}\zeta(6) | ||
5 | 2 | 0.038575124342753255505925464373 | 5\zeta(2)\zeta(5)+2\zeta(3)\zeta(4)-11\zeta(7) | ||
6 | 2 | 0.017819740416835988362659530248 | |||
2 | 3 | 0.711566197550572432096973806086 | \tfrac{9}{2}\zeta(5)-2\zeta(2)\zeta(3) | ||
3 | 3 | 0.213798868224592547099583574508 | \tfrac{1}{2}\left(\left(\zeta(3)\right)2-\zeta(6)\right) | ||
4 | 3 | 0.085159822534833651406806018872 | 17\zeta(7)-10\zeta(2)\zeta(5) | ||
5 | 3 | 0.037707672984847544011304782294 | 5\zeta(3)\zeta(5)-\tfrac{147}{24}\zeta(8)-\tfrac{5}{2}\zeta(6,2) | ||
2 | 4 | 0.674523914033968140491560608257 | \tfrac{25}{12}\zeta(6)-\left(\zeta(3)\right)2 | ||
3 | 4 | 0.207505014615732095907807605495 | 10\zeta(2)\zeta(5)+\zeta(3)\zeta(4)-18\zeta(7) | ||
4 | 4 | 0.083673113016495361614890436542 | \tfrac{1}{2}\left(\left(\zeta(4)\right)2-\zeta(8)\right) |
s+t=2p+2
p/3
\zeta(a)
In the particular case of only three parameters we have (with a > 1 and n, j, i integers):
\zeta(a,b,c)=\sumn
1 | |
najbic |
=
infty | |
\sum | |
n=1 |
1 | |
(n+2)a |
n | |
\sum | |
j=1 |
1 | |
(j+1)b |
j | |
\sum | |
i=1 |
1 | |
(i)c |
=
infty | |
\sum | |
n=1 |
1 | |
(n+2)a |
n | |
\sum | |
j=1 |
Hj,c | |
(j+1)b |
The above MZVs satisfy the Euler reflection formula:
\zeta(a,b)+\zeta(b,a)=\zeta(a)\zeta(b)-\zeta(a+b)
a,b>1
Using the shuffle relations, it is easy to prove that:[5]
\zeta(a,b,c)+\zeta(a,c,b)+\zeta(b,a,c)+\zeta(b,c,a)+\zeta(c,a,b)+\zeta(c,b,a)=\zeta(a)\zeta(b)\zeta(c)+2\zeta(a+b+c)-\zeta(a)\zeta(b+c)-\zeta(b)\zeta(a+c)-\zeta(c)\zeta(a+b)
a,b,c>1
This function can be seen as a generalization of the reflection formulas.
Let
S(i1,i2, … ,ik)=
\sum | |
n1\geqn2\geq … nk\geq1 |
1 | |||||||||||||||||||||
|
\Pi=\{P1,P2,...,Pl\}
\{1,2,...,k\}
c(\Pi)=(\left|P1\right|-1)!(\left|P2\right|-1)! … (\left|Pl\right|-1)!
\Pi
i=\{i1,...,ik\}
l | |
\prod | |
s=1 |
\zeta(\sum | |
j\inPs |
ij)
The relations between the
\zeta
S
S(i1,i2)=\zeta(i1,i2)+\zeta(i1+i2)
S(i1,i2,i3)=\zeta(i1,i2,i3)+\zeta(i1+i2,i3)+\zeta(i1,i2+i3)+\zeta(i1+i2+i3).
i1, … ,ik>1,
\sum | |
{\sigma\in\Sigmak |
Proof. Assume the
ij
\sum\sigma
\sum | |
n1\geqn2\geq … \geqnk\geq1 |
1 | ||||
|
\sigma(1)
i2 | |
{n |
group
\Sigmak
n=(1, … ,k)
n=(n1, … ,nk)
\Sigmak(n)
Λ
(1,2, … ,k)
Λ
i\simj
ni=nj
\Sigmak(n)=\{\sigma\in\Sigmak:\sigma(i)\sim\foralli\}
1 | ||||
|
\sigma(1)
i2 | |
{n |
\sum | |
{\sigma\in\Sigmak |
\left|\Sigmak(n)\right|
\Pi
Λ
\succeq
1 | ||||
|
\sigma(1)
i2 | |
{n |
\sum\Pi\succeqΛ(\Pi)
\left|\Sigmak(n)\right|=\sum\Pi\succeqΛc(\Pi)
n=\{n1, … ,nk\}
Λ
c(\Pi)
\Pi
\Sigmak(n)
Λ
For
k=3
\sum | |
{\sigma\in\Sigma3 |
i1,i2,i3>1
Having
\zeta(i1,i2, … ,ik)=\sum
n1>n2> … nk\geq1 |
1 | |||||||||||||||||||||
|
\zeta's
\Pi=\{P1, … ,Pl\}
\{1,2 … ,k\}
\tilde{c}(\Pi)=(-1)k-lc(\Pi)
For any real
i1, … ,ik>1
\sum | |
{\sigma\in\Sigmak |
Proof. We follow the same line of argument as in the preceding proof. The left-hand side is now
\sum\sigma
\sum | |
n1>n2> … >nk\geq1 |
1 | ||||
|
\sigma(1)
i2 | |
{n |
1 | |||||||||||||||||||||
|
ni
\sum\Pi\succeqΛ\tilde{c}(\Pi)=\begin{cases}1,if\left|Λ\right|=k\ 0,otherwise.\end{cases}
To prove this, note first that the sign of
\tilde{c}(\Pi)
\Pi
\Sigmak(n)
Λ
\{\{1\},\{2\}, … ,\{k\}\}
We first state the sum conjecture, which is due to C. Moen.[8]
Sum conjecture (Hoffman). For positive integers k and n,
\sum | |
i1+ … +ik=n,i1>1 |
\zeta(i1, … ,ik)=\zeta(n)
i1, … ,ik
i1>1
Three remarks concerning this conjecture are in order. First, it implies
\sum | |
i1+ … +ik=n,i1>1 |
S(i1, … ,ik)={n-1\choosek-1}\zeta(n)
k=2
\zeta(n-1,1)+\zeta(n-2,2)+ … +\zeta(2,n-2)=\zeta(n)
\zeta's
S's
n-2 | |
2S(n-1,1)=(n+1)\zeta(n)-\sum | |
k=2 |
\zeta(k)\zeta(n-k).
\tau
\Im
\Tau
\Sigma:\Im → \Tau
\Im
\Taun
\Tau
n
Rn
Cn
\Taun
Rn(a1,a2,...,al)=(n+1-al,n+1-al-1,...,n+1-a1)
Cn(a1,...,al)
\{a1,...,al\}
\{1,2,...,n\}
\tau
\tau(I)=\Sigma-1RnCn\Sigma(I)=\Sigma-1CnRn\Sigma(I)
I=(i1,i2,...,ik)\in\Im
i1+ … +ik=n
For example,
\tau(3,4,1)=\Sigma-1C8R8(3,7,8)=\Sigma-1(3,4,5,7,8)=(3,1,1,2,1).
(i1,...,ik)
\tau(i1,...,ik)
\tau
Duality conjecture (Hoffman). If
(h1,...,hn-k)
(i1,...,ik)
\zeta(h1,...,hn-k)=\zeta(i1,...,ik)
This sum conjecture is also known as Sum Theorem, and it may be expressed as follows: the Riemann zeta value of an integer n ≥ 2 is equal to the sum of all the valid (i.e. with s1 > 1) MZVs of the partitions of length k and weight n, with 1 ≤ k ≤ n − 1. In formula:[3]
\sum\stackrel{s1+ … +sk=n}{s1>1}\zeta(s1,\ldots,sk)=\zeta(n).
For example, with length k = 2 and weight n = 7:
\zeta(6,1)+\zeta(5,2)+\zeta(4,3)+\zeta(3,4)+\zeta(2,5)=\zeta(7).
The Euler sum with alternations of sign appears in studies of the non-alternating Euler sum.[5]
infty | |
\sum | |
n=1 |
| ||||||||||
(n+1)a |
=\zeta(\bar{a},b)
(b) | ||
H | =+1+ | |
n |
1 | + | |
2b |
1 | |
3b |
+ …
infty | |
\sum | |
n=1 |
\bar{H | |
n |
(b)
(b) | ||
\bar{H} | =-1+ | |
n |
1 | - | |
2b |
1 | |
3b |
+ …
infty | |
\sum | |
n=1 |
\bar{H | |
n |
(b)(-1)(n+1)
infty | |
\sum | |
n=1 |
(-1)n | |
(n+2)a |
infty | |
\sum | |
n=1 |
\bar{H | |
n |
(c)(-1)(n+1)
(c) | ||
\bar{H} | =-1+ | |
n |
1 | - | |
2c |
1 | |
3c |
+ …
infty | |
\sum | |
n=1 |
(-1)n | |
(n+2)a |
infty | |
\sum | |
n=1 |
| |||||||
(n+1)b |
=\zeta(\bar{a},b,c)
(c) | ||
H | =+1+ | |
n |
1 | + | |
2c |
1 | |
3c |
+ …
infty | |
\sum | |
n=1 |
1 | |
(n+2)a |
infty | |
\sum | |
n=1 |
| ||||||||||
(n+1)b |
=\zeta(a,\bar{b},c)
infty | |
\sum | |
n=1 |
1 | |
(n+2)a |
infty | |
\sum | |
n=1 |
\bar{H | |
n |
(c)
\phi(s)=
1-2(s-1) | |
2(s-1) |
\zeta(s)
s>1
\phi(1)=-ln2
The reflection formula
\zeta(a,b)+\zeta(b,a)=\zeta(a)\zeta(b)-\zeta(a+b)
\zeta(a,\bar{b})+\zeta(\bar{b},a)=\zeta(a)\phi(b)-\phi(a+b)
\zeta(\bar{a},b)+\zeta(b,\bar{a})=\zeta(b)\phi(a)-\phi(a+b)
\zeta(\bar{a},\bar{b})+\zeta(\bar{b},\bar{a})=\phi(a)\phi(b)-\zeta(a+b)
a=b
\zeta(\bar{a},\bar{a})=\tfrac{1}{2}[\phi2(a)-\zeta(2a)]
Using the series definition it is easy to prove:
\zeta(a,b)+\zeta(a,\bar{b})+\zeta(\bar{a},b)+\zeta(\bar{a},\bar{b})= | \zeta(a,b) |
2(a+b-2) |
a>1
\zeta(a,b,c)+\zeta(a,b,\bar{c})+\zeta(a,\bar{b},c)+\zeta(\bar{a},b,c)+\zeta(a,\bar{b},\bar{c})+\zeta(\bar{a},b,\bar{c})+\zeta(\bar{a},\bar{b},c)+\zeta(\bar{a},\bar{b},\bar{c})= | \zeta(a,b,c) |
2(a+b+c-3) |
a>1
\zeta(a,b)+\zeta(\bar{a},\bar{b})=\sums>0(a+b-s-1)![
Za(a+b-s,s) | + | |
(a-s)!(b-1)! |
Zb(a+b-s,s) | |
(b-s)!(a-1)! |
]
Z | ||||
|
Z | ||||
|
Note that
s
>1
\geqslant0
For all positive integers
a,b,...,k
infty | |
\sum | |
n=2 |
\zeta(n,k)=\zeta(k+1)
infty | |
\sum | |
n=2 |
\zeta(n,a,b,...,k)=\zeta(a+1,b,...,k)
infty | |
\sum | |
n=2 |
\zeta(n,\bar{k})=-\phi(k+1)
infty | |
\sum | |
n=2 |
\zeta(n,\bar{a},b)=\zeta(\overline{a+1},b)
infty | |
\sum | |
n=2 |
\zeta(n,a,\bar{b})=\zeta(a+1,\bar{b})
infty | |
\sum | |
n=2 |
\zeta(n,\bar{a},\bar{b})=\zeta(\overline{a+1},\bar{b})
\limk\zeta(n,k)=\zeta(n)-1
1-\zeta(2)+\zeta(3)-\zeta(4)+ … =| | 1 |
2 |
|
\zeta(a,a)=\tfrac{1}{2}[(\zeta(a))2-\zeta(2a)]
\zeta(a,a,a)=\tfrac{1}{6}(\zeta(a))3+\tfrac{1}{3}\zeta(3a)-\tfrac{1}{2}\zeta(a)\zeta(2a)
The Mordell–Tornheim zeta function, introduced by who was motivated by the papers and, is defined by
\zetaMT,r(s1,...,sr;sr+1
)=\sum | |
m1,...,mr>0 |
1 | ||||||||||||||||||||
|